ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.01672
  4. Cited By
SubOmiEmbed: Self-supervised Representation Learning of Multi-omics Data
  for Cancer Type Classification

SubOmiEmbed: Self-supervised Representation Learning of Multi-omics Data for Cancer Type Classification

3 February 2022
S. Hashim
Muhammad Ali
Karthik Nandakumar
Mohammad Yaqub
ArXiv (abs)PDFHTML

Papers citing "SubOmiEmbed: Self-supervised Representation Learning of Multi-omics Data for Cancer Type Classification"

12 / 12 papers shown
Title
SubTab: Subsetting Features of Tabular Data for Self-Supervised
  Representation Learning
SubTab: Subsetting Features of Tabular Data for Self-Supervised Representation Learning
Talip Uçar
Ehsan Hajiramezanali
Lindsay Edwards
LMTDSSL
66
135
0
08 Oct 2021
OmiEmbed: a unified multi-task deep learning framework for multi-omics
  data
OmiEmbed: a unified multi-task deep learning framework for multi-omics data
Xiaoyu Zhang
Yuting Xing
Kai Sun
Yike Guo
128
63
0
03 Feb 2021
A Framework For Contrastive Self-Supervised Learning And Designing A New
  Approach
A Framework For Contrastive Self-Supervised Learning And Designing A New Approach
William Falcon
Kyunghyun Cho
SSL
71
104
0
31 Aug 2020
A Simple Framework for Contrastive Learning of Visual Representations
A Simple Framework for Contrastive Learning of Visual Representations
Ting-Li Chen
Simon Kornblith
Mohammad Norouzi
Geoffrey E. Hinton
SSL
393
18,897
0
13 Feb 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
568
42,677
0
03 Dec 2019
TabNet: Attentive Interpretable Tabular Learning
TabNet: Attentive Interpretable Tabular Learning
Sercan O. Arik
Tomas Pfister
LMTD
206
1,365
0
20 Aug 2019
Integrated Multi-omics Analysis Using Variational Autoencoders:
  Application to Pan-cancer Classification
Integrated Multi-omics Analysis Using Variational Autoencoders: Application to Pan-cancer Classification
Xiaoyu Zhang
Jingqing Zhang
Kai Sun
Xian Yang
Chengliang Dai
Yike Guo
DRL
59
67
0
17 Aug 2019
Continual learning with hypernetworks
Continual learning with hypernetworks
J. Oswald
Christian Henning
Benjamin Grewe
João Sacramento
CLL
90
363
0
03 Jun 2019
t-SNE-CUDA: GPU-Accelerated t-SNE and its Applications to Modern Data
t-SNE-CUDA: GPU-Accelerated t-SNE and its Applications to Modern Data
David M. Chan
Roshan Rao
Forrest Huang
John F. Canny
59
95
0
31 Jul 2018
Hybrid Approach of Relation Network and Localized Graph Convolutional
  Filtering for Breast Cancer Subtype Classification
Hybrid Approach of Relation Network and Localized Graph Convolutional Filtering for Breast Cancer Subtype Classification
SungMin Rhee
Seokjun Seo
Sun Kim
GNN
119
176
0
16 Nov 2017
Auto-Encoding Variational Bayes
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
461
16,922
0
20 Dec 2013
Efficient Estimation of Word Representations in Vector Space
Efficient Estimation of Word Representations in Vector Space
Tomas Mikolov
Kai Chen
G. Corrado
J. Dean
3DV
693
31,571
0
16 Jan 2013
1