ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.13254
  4. Cited By
Learning Hamiltonians of constrained mechanical systems

Learning Hamiltonians of constrained mechanical systems

31 January 2022
E. Celledoni
A. Leone
Davide Murari
B. Owren
    AI4CE
ArXivPDFHTML

Papers citing "Learning Hamiltonians of constrained mechanical systems"

12 / 12 papers shown
Title
Symplectic Neural Flows for Modeling and Discovery
Symplectic Neural Flows for Modeling and Discovery
Priscilla Canizares
Davide Murari
Carola-Bibiane Schönlieb
Ferdia Sherry
Zakhar Shumaylov
80
1
0
21 Dec 2024
A Riemannian Framework for Learning Reduced-order Lagrangian Dynamics
A Riemannian Framework for Learning Reduced-order Lagrangian Dynamics
Katharina Friedl
Noémie Jaquier
Jens Lundell
Tamim Asfour
Danica Kragic
AI4CE
28
0
0
24 Oct 2024
Symplectic Neural Networks Based on Dynamical Systems
Symplectic Neural Networks Based on Dynamical Systems
Benjamin K Tapley
37
1
0
19 Aug 2024
Learning Dynamical Systems from Noisy Data with Inverse-Explicit
  Integrators
Learning Dynamical Systems from Noisy Data with Inverse-Explicit Integrators
Haakon Noren
Sølve Eidnes
E. Celledoni
21
3
0
06 Jun 2023
Predictions Based on Pixel Data: Insights from PDEs and Finite
  Differences
Predictions Based on Pixel Data: Insights from PDEs and Finite Differences
E. Celledoni
James Jackaman
Davide Murari
B. Owren
33
1
0
01 May 2023
Pseudo-Hamiltonian neural networks for learning partial differential
  equations
Pseudo-Hamiltonian neural networks for learning partial differential equations
Sølve Eidnes
K. Lye
18
10
0
27 Apr 2023
Fixed-kinetic Neural Hamiltonian Flows for enhanced interpretability and
  reduced complexity
Fixed-kinetic Neural Hamiltonian Flows for enhanced interpretability and reduced complexity
Vincent Souveton
Arnaud Guillin
J. Jasche
G. Lavaux
Manon Michel
20
3
0
03 Feb 2023
Dynamical systems' based neural networks
Dynamical systems' based neural networks
E. Celledoni
Davide Murari
B. Owren
Carola-Bibiane Schönlieb
Ferdia Sherry
OOD
40
10
0
05 Oct 2022
FINDE: Neural Differential Equations for Finding and Preserving
  Invariant Quantities
FINDE: Neural Differential Equations for Finding and Preserving Invariant Quantities
Takashi Matsubara
Takaharu Yaguchi
PINN
14
7
0
01 Oct 2022
Pseudo-Hamiltonian Neural Networks with State-Dependent External Forces
Pseudo-Hamiltonian Neural Networks with State-Dependent External Forces
Sølve Eidnes
Alexander J. Stasik
Camilla Sterud
Eivind Bøhn
S. Riemer-Sørensen
11
17
0
06 Jun 2022
Learning Neural Hamiltonian Dynamics: A Methodological Overview
Learning Neural Hamiltonian Dynamics: A Methodological Overview
Zhijie Chen
Mingquan Feng
Junchi Yan
H. Zha
AI4CE
19
15
0
28 Feb 2022
Symplectic Recurrent Neural Networks
Symplectic Recurrent Neural Networks
Zhengdao Chen
Jianyu Zhang
Martín Arjovsky
Léon Bottou
146
219
0
29 Sep 2019
1