Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2201.11872
Cited By
Local Latent Space Bayesian Optimization over Structured Inputs
28 January 2022
Natalie Maus
Haydn Thomas Jones
Juston Moore
Matt J. Kusner
John Bradshaw
Jacob R. Gardner
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Local Latent Space Bayesian Optimization over Structured Inputs"
44 / 44 papers shown
Title
Safe Bayesian Optimization for the Control of High-Dimensional Embodied Systems
Yunyue Wei
Zeji Yi
Hongda Li
Saraswati Soedarmadji
Yanan Sui
61
0
0
31 Dec 2024
Optimistic Games for Combinatorial Bayesian Optimization with Application to Protein Design
Melis Ilayda Bal
Pier Giuseppe Sessa
Mojmír Mutný
Andreas Krause
58
1
0
27 Sep 2024
CATBench: A Compiler Autotuning Benchmarking Suite for Black-box Optimization
Jacob O. Tørring
Carl Hvarfner
Luigi Nardi
Magnus Sjalander
78
1
0
24 Jun 2024
Expected Coordinate Improvement for High-Dimensional Bayesian Optimization
Dawei Zhan
64
5
0
18 Apr 2024
Combining Latent Space and Structured Kernels for Bayesian Optimization over Combinatorial Spaces
Aryan Deshwal
J. Doppa
BDL
61
42
0
01 Nov 2021
Improving black-box optimization in VAE latent space using decoder uncertainty
Pascal Notin
José Miguel Hernández-Lobato
Y. Gal
112
61
0
30 Jun 2021
High-Dimensional Bayesian Optimisation with Variational Autoencoders and Deep Metric Learning
Antoine Grosnit
Rasul Tutunov
A. Maraval
Ryan-Rhys Griffiths
Alexander I. Cowen-Rivers
...
Wenlong Lyu
Zhitang Chen
Jun Wang
Jan Peters
Haitham Bou-Ammar
BDL
DRL
58
60
0
07 Jun 2021
MARS: Markov Molecular Sampling for Multi-objective Drug Discovery
Yutong Xie
Chence Shi
Hao Zhou
Yuwei Yang
Weinan Zhang
Yong Yu
Lei Li
74
143
0
18 Mar 2021
High-Dimensional Bayesian Optimization with Sparse Axis-Aligned Subspaces
David Eriksson
M. Jankowiak
57
139
0
27 Feb 2021
Therapeutics Data Commons: Machine Learning Datasets and Tasks for Drug Discovery and Development
Kexin Huang
Tianfan Fu
Wenhao Gao
Yue Zhao
Yusuf Roohani
J. Leskovec
Connor W. Coley
Cao Xiao
Jimeng Sun
Marinka Zitnik
OOD
LM&MA
52
272
0
18 Feb 2021
Good practices for Bayesian Optimization of high dimensional structured spaces
E. Siivola
Javier I. González
Andrei Paleyes
Aki Vehtari
57
37
0
31 Dec 2020
Accelerating high-throughput virtual screening through molecular pool-based active learning
David E. Graff
E. Shakhnovich
Connor W. Coley
100
145
0
13 Dec 2020
Guiding Deep Molecular Optimization with Genetic Exploration
SungSoo Ahn
Junsup Kim
Hankook Lee
Jinwoo Shin
62
73
0
04 Jul 2020
Sample-Efficient Optimization in the Latent Space of Deep Generative Models via Weighted Retraining
Austin Tripp
Erik A. Daxberger
José Miguel Hernández-Lobato
MedIm
56
139
0
16 Jun 2020
Autonomous discovery in the chemical sciences part II: Outlook
Connor W. Coley
Natalie S. Eyke
K. Jensen
45
171
0
30 Mar 2020
Autonomous discovery in the chemical sciences part I: Progress
Connor W. Coley
Natalie S. Eyke
K. Jensen
46
215
0
30 Mar 2020
Decision-Making with Auto-Encoding Variational Bayes
Romain Lopez
Pierre Boyeau
Nir Yosef
Michael I. Jordan
Jeffrey Regier
BDL
244
10,591
0
17 Feb 2020
Exploring Chemical Space using Natural Language Processing Methodologies for Drug Discovery
Hakime Öztürk
Arzucan Özgür
P. Schwaller
Teodoro Laino
Elif Özkirimli
63
118
0
10 Feb 2020
Scalable Global Optimization via Local Bayesian Optimization
Samyam Rajbhandari
Michael Pearce
Jacob R. Gardner
Ryan D. Turner
Matthias Poloczek
79
458
0
03 Oct 2019
Augmenting Genetic Algorithms with Deep Neural Networks for Exploring the Chemical Space
AkshatKumar Nigam
Pascal Friederich
Mario Krenn
Alán Aspuru-Guzik
AI4CE
41
131
0
25 Sep 2019
Self-Referencing Embedded Strings (SELFIES): A 100% robust molecular string representation
Mario Krenn
Florian Hase
AkshatKumar Nigam
Pascal Friederich
Alán Aspuru-Guzik
74
71
0
31 May 2019
D-VAE: A Variational Autoencoder for Directed Acyclic Graphs
Muhan Zhang
Shali Jiang
Zhicheng Cui
Roman Garnett
Yixin Chen
GNN
BDL
CML
62
199
0
24 Apr 2019
GuacaMol: Benchmarking Models for De Novo Molecular Design
Nathan Brown
Marco Fiscato
Marwin H. S. Segler
Alain C. Vaucher
ELM
84
703
0
22 Nov 2018
Optimization of Molecules via Deep Reinforcement Learning
Zhenpeng Zhou
S. Kearnes
Li Li
R. Zare
Patrick F. Riley
AI4CE
74
537
0
19 Oct 2018
GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration
Jacob R. Gardner
Geoff Pleiss
D. Bindel
Kilian Q. Weinberger
A. Wilson
GP
77
1,088
0
28 Sep 2018
Molecular Hypergraph Grammar with its Application to Molecular Optimization
Hiroshi Kajino
38
102
0
08 Sep 2018
Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation
Jiaxuan You
Bowen Liu
Rex Ying
Vijay S. Pande
J. Leskovec
GNN
267
895
0
07 Jun 2018
Syntax-Directed Variational Autoencoder for Structured Data
H. Dai
Yingtao Tian
Bo Dai
Steven Skiena
Le Song
77
325
0
24 Feb 2018
NeVAE: A Deep Generative Model for Molecular Graphs
Bidisha Samanta
A. De
G. Jana
P. Chattaraj
Niloy Ganguly
Manuel Gomez Rodriguez
GNN
DRL
BDL
DiffM
56
214
0
14 Feb 2018
Junction Tree Variational Autoencoder for Molecular Graph Generation
Wengong Jin
Regina Barzilay
Tommi Jaakkola
303
1,358
0
12 Feb 2018
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
501
129,831
0
12 Jun 2017
Parallel and Distributed Thompson Sampling for Large-scale Accelerated Exploration of Chemical Space
José Miguel Hernández-Lobato
James Requeima
Edward O. Pyzer-Knapp
Alán Aspuru-Guzik
56
181
0
06 Jun 2017
Batched Large-scale Bayesian Optimization in High-dimensional Spaces
Zi Wang
Clement Gehring
Pushmeet Kohli
Stefanie Jegelka
UQCV
37
211
0
05 Jun 2017
Molecular De Novo Design through Deep Reinforcement Learning
Marcus Olivecrona
T. Blaschke
Ola Engkvist
Hongming Chen
BDL
99
1,003
0
25 Apr 2017
Grammar Variational Autoencoder
Matt J. Kusner
Brooks Paige
José Miguel Hernández-Lobato
BDL
DRL
71
838
0
06 Mar 2017
Stochastic Variational Deep Kernel Learning
A. Wilson
Zhiting Hu
Ruslan Salakhutdinov
Eric Xing
BDL
69
267
0
01 Nov 2016
Automatic chemical design using a data-driven continuous representation of molecules
Rafael Gómez-Bombarelli
Jennifer N. Wei
David Duvenaud
José Miguel Hernández-Lobato
Benjamín Sánchez-Lengeling
Dennis Sheberla
J. Aguilera-Iparraguirre
Timothy D. Hirzel
Ryan P. Adams
Alán Aspuru-Guzik
3DV
132
2,911
0
07 Oct 2016
Deep Kernel Learning
A. Wilson
Zhiting Hu
Ruslan Salakhutdinov
Eric Xing
BDL
196
882
0
06 Nov 2015
High Dimensional Bayesian Optimisation and Bandits via Additive Models
Kirthevasan Kandasamy
J. Schneider
Barnabás Póczós
51
354
0
05 Mar 2015
Semi-Supervised Learning with Deep Generative Models
Diederik P. Kingma
Danilo Jimenez Rezende
S. Mohamed
Max Welling
GAN
SSL
BDL
73
2,731
0
20 Jun 2014
Active Learning of Linear Embeddings for Gaussian Processes
Roman Garnett
Michael A. Osborne
Philipp Hennig
GP
82
91
0
24 Oct 2013
Gaussian Processes for Big Data
J. Hensman
Nicolò Fusi
Neil D. Lawrence
GP
94
1,226
0
26 Sep 2013
Bayesian Optimization in a Billion Dimensions via Random Embeddings
Ziyun Wang
Frank Hutter
M. Zoghi
David Matheson
Nando de Freitas
152
439
0
09 Jan 2013
Practical Bayesian Optimization of Machine Learning Algorithms
Jasper Snoek
Hugo Larochelle
Ryan P. Adams
298
7,883
0
13 Jun 2012
1