Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2201.10154
Cited By
Neural Information Squeezer for Causal Emergence
25 January 2022
Jiang Zhang
Kaiwei Liu
CML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Neural Information Squeezer for Causal Emergence"
19 / 19 papers shown
Title
Discovering State Variables Hidden in Experimental Data
Boyuan Chen
Kuang Huang
Sunand Raghupathi
I. Chandratreya
Qi Du
Hod Lipson
CML
37
16
0
20 Dec 2021
Universal Approximation Property of Neural Ordinary Differential Equations
Takeshi Teshima
Koichi Tojo
Masahiro Ikeda
Isao Ishikawa
Kenta Oono
54
40
0
04 Dec 2020
Contrastive Representation Learning: A Framework and Review
Phúc H. Lê Khắc
Graham Healy
Alan F. Smeaton
SSL
AI4TS
309
708
0
10 Oct 2020
RG-Flow: A hierarchical and explainable flow model based on renormalization group and sparse prior
Hong-Ye Hu
Dian Wu
Yi-Zhuang You
Bruno A. Olshausen
Yubei Chen
BDL
DRL
50
15
0
30 Sep 2020
Coupling-based Invertible Neural Networks Are Universal Diffeomorphism Approximators
Takeshi Teshima
Isao Ishikawa
Koichi Tojo
Kenta Oono
Masahiro Ikeda
Masashi Sugiyama
51
111
0
20 Jun 2020
Amortized Causal Discovery: Learning to Infer Causal Graphs from Time-Series Data
Sindy Löwe
David Madras
R. Zemel
Max Welling
CML
BDL
AI4TS
97
131
0
18 Jun 2020
Approximate Causal Abstraction
Sander Beckers
F. Eberhardt
Joseph Y. Halpern
56
52
0
27 Jun 2019
A General Deep Learning Framework for Network Reconstruction and Dynamics Learning
Zhang Zhang
Yi Zhao
Jing Liu
Shuo Wang
Ruyi Tao
Ruyue Xin
Jiang Zhang
AI4CE
47
54
0
30 Dec 2018
Discovering physical concepts with neural networks
Raban Iten
Tony Metger
H. Wilming
L. D. Rio
R. Renner
PINN
AI4CE
53
391
0
26 Jul 2018
Graph networks as learnable physics engines for inference and control
Alvaro Sanchez-Gonzalez
N. Heess
Jost Tobias Springenberg
J. Merel
Martin Riedmiller
R. Hadsell
Peter W. Battaglia
GNN
AI4CE
PINN
OCL
202
600
0
04 Jun 2018
Neural Network Renormalization Group
Shuo-Hui Li
Lei Wang
BDL
DRL
59
125
0
08 Feb 2018
Causal Consistency of Structural Equation Models
Paul Kishan Rubenstein
S. Weichwald
Stephan Bongers
Joris M. Mooij
Dominik Janzing
Moritz Grosse-Wentrup
Bernhard Schölkopf
CML
83
127
0
04 Jul 2017
Mutual Information, Neural Networks and the Renormalization Group
M. Koch-Janusz
Zohar Ringel
DRL
AI4CE
76
176
0
20 Apr 2017
Opening the Black Box of Deep Neural Networks via Information
Ravid Shwartz-Ziv
Naftali Tishby
AI4CE
100
1,409
0
02 Mar 2017
When the map is better than the territory
Erik P. Hoel
54
116
0
30 Dec 2016
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Dan Garber
Laurent Dinh
Chi Jin
Jascha Narain Sohl-Dickstein
Samy Bengio
Praneeth Netrapalli
Aaron Sidford
263
3,696
0
26 May 2016
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
452
16,933
0
20 Dec 2013
Distributed Representations of Words and Phrases and their Compositionality
Tomas Mikolov
Ilya Sutskever
Kai Chen
G. Corrado
J. Dean
NAI
OCL
394
33,529
0
16 Oct 2013
Representation Learning: A Review and New Perspectives
Yoshua Bengio
Aaron Courville
Pascal Vincent
OOD
SSL
256
12,435
0
24 Jun 2012
1