ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.10085
  4. Cited By
Dissipative Hamiltonian Neural Networks: Learning Dissipative and
  Conservative Dynamics Separately

Dissipative Hamiltonian Neural Networks: Learning Dissipative and Conservative Dynamics Separately

25 January 2022
A. Sosanya
S. Greydanus
    PINN
    AI4CE
ArXivPDFHTML

Papers citing "Dissipative Hamiltonian Neural Networks: Learning Dissipative and Conservative Dynamics Separately"

22 / 22 papers shown
Title
MetaSym: A Symplectic Meta-learning Framework for Physical Intelligence
MetaSym: A Symplectic Meta-learning Framework for Physical Intelligence
Pranav Vaidhyanathan
Aristotelis Papatheodorou
Mark T. Mitchison
Natalia Ares
Ioannis Havoutis
PINN
AI4CE
49
1
0
23 Feb 2025
Symplectic Neural Flows for Modeling and Discovery
Symplectic Neural Flows for Modeling and Discovery
Priscilla Canizares
Davide Murari
Carola-Bibiane Schönlieb
Ferdia Sherry
Zakhar Shumaylov
80
1
0
21 Dec 2024
Training Hamiltonian neural networks without backpropagation
Training Hamiltonian neural networks without backpropagation
Atamert Rahma
Chinmay Datar
Felix Dietrich
74
0
0
26 Nov 2024
Neural Hamilton: Can A.I. Understand Hamiltonian Mechanics?
Neural Hamilton: Can A.I. Understand Hamiltonian Mechanics?
Tae-Geun Kim
Seong Chan Park
28
0
0
28 Oct 2024
Learning dissipative Hamiltonian dynamics with reproducing kernel
  Hilbert spaces and random Fourier features
Learning dissipative Hamiltonian dynamics with reproducing kernel Hilbert spaces and random Fourier features
Torbjørn Smith
Olav Egeland
26
0
0
24 Oct 2024
Lagrangian Neural Networks for Reversible Dissipative Evolution
Lagrangian Neural Networks for Reversible Dissipative Evolution
V. Sundararaghavan
Megna N. Shah
Jeff P. Simmons
PINN
41
0
0
23 May 2024
A comparison of Single- and Double-generator formalisms for
  Thermodynamics-Informed Neural Networks
A comparison of Single- and Double-generator formalisms for Thermodynamics-Informed Neural Networks
Pau Urdeitx
Ic´ıar Alfaro
David González
Francisco Chinesta
Elías Cueto
AI4CE
35
1
0
01 Apr 2024
Neural Operators Meet Energy-based Theory: Operator Learning for
  Hamiltonian and Dissipative PDEs
Neural Operators Meet Energy-based Theory: Operator Learning for Hamiltonian and Dissipative PDEs
Yusuke Tanaka
Takaharu Yaguchi
Tomoharu Iwata
N. Ueda
AI4CE
42
0
0
14 Feb 2024
Structure-Preserving Physics-Informed Neural Networks With Energy or
  Lyapunov Structure
Structure-Preserving Physics-Informed Neural Networks With Energy or Lyapunov Structure
Haoyu Chu
Yuto Miyatake
Wenjun Cui
Shikui Wei
Daisuke Furihata
PINN
25
2
0
10 Jan 2024
Discussing the Spectrum of Physics-Enhanced Machine Learning; a Survey
  on Structural Mechanics Applications
Discussing the Spectrum of Physics-Enhanced Machine Learning; a Survey on Structural Mechanics Applications
M. Haywood-Alexander
Wei Liu
Kiran Bacsa
Zhilu Lai
Eleni Chatzi
AI4CE
13
9
0
31 Oct 2023
Symmetry Preservation in Hamiltonian Systems: Simulation and Learning
Symmetry Preservation in Hamiltonian Systems: Simulation and Learning
M. Vaquero
Jorge Cortés
David Martín de Diego
24
4
0
30 Aug 2023
Physics-Informed Learning Using Hamiltonian Neural Networks with Output
  Error Noise Models
Physics-Informed Learning Using Hamiltonian Neural Networks with Output Error Noise Models
Sarvin Moradi
N. Jaensson
Roland Tóth
Maarten Schoukens
PINN
30
3
0
02 May 2023
Pseudo-Hamiltonian neural networks for learning partial differential
  equations
Pseudo-Hamiltonian neural networks for learning partial differential equations
Sølve Eidnes
K. Lye
20
10
0
27 Apr 2023
Gaussian processes at the Helm(holtz): A more fluid model for ocean
  currents
Gaussian processes at the Helm(holtz): A more fluid model for ocean currents
Renato Berlinghieri
Brian L. Trippe
David R. Burt
Ryan Giordano
K. Srinivasan
Tamay Ozgokmen
Junfei Xia
Tamara Broderick
21
10
0
20 Feb 2023
Data-driven discovery of non-Newtonian astronomy via learning
  non-Euclidean Hamiltonian
Data-driven discovery of non-Newtonian astronomy via learning non-Euclidean Hamiltonian
Oswin So
Gongjie Li
Evangelos A. Theodorou
Molei Tao
AI4CE
30
3
0
30 Sep 2022
Constants of motion network
Constants of motion network
M. F. Kasim
Yi Heng Lim
31
4
0
22 Aug 2022
Unifying physical systems' inductive biases in neural ODE using dynamics
  constraints
Unifying physical systems' inductive biases in neural ODE using dynamics constraints
Yi Heng Lim
M. F. Kasim
PINN
AI4CE
17
5
0
03 Aug 2022
KeyCLD: Learning Constrained Lagrangian Dynamics in Keypoint Coordinates
  from Images
KeyCLD: Learning Constrained Lagrangian Dynamics in Keypoint Coordinates from Images
Rembert Daems
Jeroen Taets
Francis Wyffels
Guillaume Crevecoeur
21
1
0
22 Jun 2022
Neural Implicit Representations for Physical Parameter Inference from a
  Single Video
Neural Implicit Representations for Physical Parameter Inference from a Single Video
Florian Hofherr
Lukas Koestler
Florian Bernard
Daniel Cremers
AI4CE
37
9
0
29 Apr 2022
Learning Neural Hamiltonian Dynamics: A Methodological Overview
Learning Neural Hamiltonian Dynamics: A Methodological Overview
Zhijie Chen
Mingquan Feng
Junchi Yan
H. Zha
AI4CE
19
15
0
28 Feb 2022
Dissipative Deep Neural Dynamical Systems
Dissipative Deep Neural Dynamical Systems
Ján Drgoňa
Soumya Vasisht
Aaron Tuor
D. Vrabie
21
7
0
26 Nov 2020
Symplectic Recurrent Neural Networks
Symplectic Recurrent Neural Networks
Zhengdao Chen
Jianyu Zhang
Martín Arjovsky
Léon Bottou
146
220
0
29 Sep 2019
1