Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2201.10085
Cited By
Dissipative Hamiltonian Neural Networks: Learning Dissipative and Conservative Dynamics Separately
25 January 2022
A. Sosanya
S. Greydanus
PINN
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Dissipative Hamiltonian Neural Networks: Learning Dissipative and Conservative Dynamics Separately"
21 / 21 papers shown
Title
Symplectic Neural Flows for Modeling and Discovery
Priscilla Canizares
Davide Murari
Carola-Bibiane Schönlieb
Ferdia Sherry
Zakhar Shumaylov
80
1
0
21 Dec 2024
Training Hamiltonian neural networks without backpropagation
Atamert Rahma
Chinmay Datar
Felix Dietrich
69
0
0
26 Nov 2024
Neural Hamilton: Can A.I. Understand Hamiltonian Mechanics?
Tae-Geun Kim
Seong Chan Park
23
0
0
28 Oct 2024
Learning dissipative Hamiltonian dynamics with reproducing kernel Hilbert spaces and random Fourier features
Torbjørn Smith
Olav Egeland
26
0
0
24 Oct 2024
Lagrangian Neural Networks for Reversible Dissipative Evolution
V. Sundararaghavan
Megna N. Shah
Jeff P. Simmons
PINN
30
0
0
23 May 2024
A comparison of Single- and Double-generator formalisms for Thermodynamics-Informed Neural Networks
Pau Urdeitx
Ic´ıar Alfaro
David González
Francisco Chinesta
Elías Cueto
AI4CE
30
1
0
01 Apr 2024
Neural Operators Meet Energy-based Theory: Operator Learning for Hamiltonian and Dissipative PDEs
Yusuke Tanaka
Takaharu Yaguchi
Tomoharu Iwata
N. Ueda
AI4CE
37
0
0
14 Feb 2024
Structure-Preserving Physics-Informed Neural Networks With Energy or Lyapunov Structure
Haoyu Chu
Yuto Miyatake
Wenjun Cui
Shikui Wei
Daisuke Furihata
PINN
18
1
0
10 Jan 2024
Discussing the Spectrum of Physics-Enhanced Machine Learning; a Survey on Structural Mechanics Applications
M. Haywood-Alexander
Wei Liu
Kiran Bacsa
Zhilu Lai
Eleni Chatzi
AI4CE
13
9
0
31 Oct 2023
Symmetry Preservation in Hamiltonian Systems: Simulation and Learning
M. Vaquero
Jorge Cortés
David Martín de Diego
17
4
0
30 Aug 2023
Physics-Informed Learning Using Hamiltonian Neural Networks with Output Error Noise Models
Sarvin Moradi
N. Jaensson
Roland Tóth
Maarten Schoukens
PINN
30
3
0
02 May 2023
Pseudo-Hamiltonian neural networks for learning partial differential equations
Sølve Eidnes
K. Lye
18
10
0
27 Apr 2023
Gaussian processes at the Helm(holtz): A more fluid model for ocean currents
Renato Berlinghieri
Brian L. Trippe
David R. Burt
Ryan Giordano
K. Srinivasan
Tamay Ozgokmen
Junfei Xia
Tamara Broderick
13
10
0
20 Feb 2023
Data-driven discovery of non-Newtonian astronomy via learning non-Euclidean Hamiltonian
Oswin So
Gongjie Li
Evangelos A. Theodorou
Molei Tao
AI4CE
20
3
0
30 Sep 2022
Constants of motion network
M. F. Kasim
Yi Heng Lim
17
4
0
22 Aug 2022
Unifying physical systems' inductive biases in neural ODE using dynamics constraints
Yi Heng Lim
M. F. Kasim
PINN
AI4CE
12
5
0
03 Aug 2022
KeyCLD: Learning Constrained Lagrangian Dynamics in Keypoint Coordinates from Images
Rembert Daems
Jeroen Taets
Francis Wyffels
Guillaume Crevecoeur
11
1
0
22 Jun 2022
Neural Implicit Representations for Physical Parameter Inference from a Single Video
Florian Hofherr
Lukas Koestler
Florian Bernard
Daniel Cremers
AI4CE
37
9
0
29 Apr 2022
Learning Neural Hamiltonian Dynamics: A Methodological Overview
Zhijie Chen
Mingquan Feng
Junchi Yan
H. Zha
AI4CE
19
15
0
28 Feb 2022
Dissipative Deep Neural Dynamical Systems
Ján Drgoňa
Soumya Vasisht
Aaron Tuor
D. Vrabie
19
6
0
26 Nov 2020
Symplectic Recurrent Neural Networks
Zhengdao Chen
Jianyu Zhang
Martín Arjovsky
Léon Bottou
146
219
0
29 Sep 2019
1