ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.09656
  4. Cited By
A singular Riemannian geometry approach to Deep Neural Networks I.
  Theoretical foundations

A singular Riemannian geometry approach to Deep Neural Networks I. Theoretical foundations

17 December 2021
A. Benfenati
A. Marta
ArXivPDFHTML

Papers citing "A singular Riemannian geometry approach to Deep Neural Networks I. Theoretical foundations"

10 / 10 papers shown
Title
GeloVec: Higher Dimensional Geometric Smoothing for Coherent Visual Feature Extraction in Image Segmentation
GeloVec: Higher Dimensional Geometric Smoothing for Coherent Visual Feature Extraction in Image Segmentation
Boris Kriuk
Matey Yordanov
35
0
0
02 May 2025
Unveiling Transformer Perception by Exploring Input Manifolds
Unveiling Transformer Perception by Exploring Input Manifolds
A. Benfenati
Alfio Ferrara
A. Marta
Davide Riva
Elisabetta Rocchetti
18
0
0
08 Oct 2024
Deep Learning as Ricci Flow
Deep Learning as Ricci Flow
Anthony Baptista
Alessandro Barp
Tapabrata Chakraborti
Chris Harbron
Ben D. MacArthur
Christopher R. S. Banerji
AI4CE
41
0
0
22 Apr 2024
A singular Riemannian Geometry Approach to Deep Neural Networks III.
  Piecewise Differentiable Layers and Random Walks on $n$-dimensional Classes
A singular Riemannian Geometry Approach to Deep Neural Networks III. Piecewise Differentiable Layers and Random Walks on nnn-dimensional Classes
A. Benfenati
A. Marta
24
1
0
09 Apr 2024
Probabilistic Risk Assessment of an Obstacle Detection System for GoA 4
  Freight Trains
Probabilistic Risk Assessment of an Obstacle Detection System for GoA 4 Freight Trains
Mario Gleirscher
A. Haxthausen
J. Peleska
16
4
0
26 Jun 2023
Neural networks learn to magnify areas near decision boundaries
Neural networks learn to magnify areas near decision boundaries
Jacob A. Zavatone-Veth
Sheng Yang
Julian Rubinfien
C. Pehlevan
MLT
AI4CE
20
6
0
26 Jan 2023
Origami in N dimensions: How feed-forward networks manufacture linear
  separability
Origami in N dimensions: How feed-forward networks manufacture linear separability
Christian Keup
M. Helias
11
8
0
21 Mar 2022
A singular Riemannian geometry approach to Deep Neural Networks II.
  Reconstruction of 1-D equivalence classes
A singular Riemannian geometry approach to Deep Neural Networks II. Reconstruction of 1-D equivalence classes
A. Benfenati
A. Marta
3DPC
15
9
0
17 Dec 2021
Geometric deep learning on graphs and manifolds using mixture model CNNs
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
251
1,811
0
25 Nov 2016
Geometric deep learning: going beyond Euclidean data
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
250
3,236
0
24 Nov 2016
1