ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.06357
  4. Cited By
Disentangled Latent Transformer for Interpretable Monocular Height
  Estimation

Disentangled Latent Transformer for Interpretable Monocular Height Estimation

17 January 2022
Zhitong Xiong Sining Chen
Sining Chen
Yilei Shi
Xiaoxiang Zhu
    ViT
ArXivPDFHTML

Papers citing "Disentangled Latent Transformer for Interpretable Monocular Height Estimation"

28 / 28 papers shown
Title
THE Benchmark: Transferable Representation Learning for Monocular Height
  Estimation
THE Benchmark: Transferable Representation Learning for Monocular Height Estimation
Zhitong Xiong
Wei Huang
Jingtao Hu
Xiao Xiang Zhu
101
20
0
30 Dec 2021
Towards Interpretable Deep Networks for Monocular Depth Estimation
Towards Interpretable Deep Networks for Monocular Depth Estimation
Zunzhi You
Yi-Hsuan Tsai
W. Chiu
Guanbin Li
FAtt
62
17
0
11 Aug 2021
Single View Geocentric Pose in the Wild
Single View Geocentric Pose in the Wild
Gordon A. Christie
Kevin Foster
Shea Hagstrom
Gregory D. Hager
M. Brown
32
17
0
18 May 2021
PiCIE: Unsupervised Semantic Segmentation using Invariance and
  Equivariance in Clustering
PiCIE: Unsupervised Semantic Segmentation using Invariance and Equivariance in Clustering
Jang Hyun Cho
Utkarsh Mall
Kavita Bala
B. Hariharan
68
196
0
30 Mar 2021
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
Ze Liu
Yutong Lin
Yue Cao
Han Hu
Yixuan Wei
Zheng Zhang
Stephen Lin
B. Guo
ViT
447
21,418
0
25 Mar 2021
Interpreting Super-Resolution Networks with Local Attribution Maps
Interpreting Super-Resolution Networks with Local Attribution Maps
Jinjin Gu
Chao Dong
FAtt
SupR
60
214
0
22 Nov 2020
Training Interpretable Convolutional Neural Networks by Differentiating
  Class-specific Filters
Training Interpretable Convolutional Neural Networks by Differentiating Class-specific Filters
Haoyun Liang
Zhihao Ouyang
Yuyuan Zeng
Hang Su
Zihao He
Shutao Xia
Jun Zhu
Bo Zhang
57
47
0
16 Jul 2020
Learning Geocentric Object Pose in Oblique Monocular Images
Learning Geocentric Object Pose in Oblique Monocular Images
Gordon A. Christie
Rodrigo Rene Rai Munoz Abujder
Kevin Foster
Shea Hagstrom
Gregory Hager
M. Brown
MDE
55
31
0
01 Jul 2020
The Edge of Depth: Explicit Constraints between Segmentation and Depth
The Edge of Depth: Explicit Constraints between Segmentation and Depth
Shengjie Zhu
Garrick Brazil
Xiaoming Liu
MDE
58
105
0
01 Apr 2020
Enforcing geometric constraints of virtual normal for depth prediction
Enforcing geometric constraints of virtual normal for depth prediction
Wei Yin
Yifan Liu
Chunhua Shen
Youliang Yan
3DV
MDE
112
428
0
29 Jul 2019
How do neural networks see depth in single images?
How do neural networks see depth in single images?
T. V. Dijk
Guido de Croon
VLM
MDE
74
198
0
16 May 2019
Visualization of Convolutional Neural Networks for Monocular Depth
  Estimation
Visualization of Convolutional Neural Networks for Monocular Depth Estimation
Junjie Hu
Yan Zhang
Takayuki Okatani
MDE
102
83
0
06 Apr 2019
Semantic Stereo for Incidental Satellite Images
Semantic Stereo for Incidental Satellite Images
Marc Bosch
Kevin Foster
Gordon A. Christie
Sean Wang
Gregory Hager
M. Brown
3DV
45
141
0
21 Nov 2018
Invariant Information Clustering for Unsupervised Image Classification
  and Segmentation
Invariant Information Clustering for Unsupervised Image Classification and Segmentation
Xu Ji
João F. Henriques
Andrea Vedaldi
SSL
VLM
84
850
0
17 Jul 2018
This Looks Like That: Deep Learning for Interpretable Image Recognition
This Looks Like That: Deep Learning for Interpretable Image Recognition
Chaofan Chen
Oscar Li
Chaofan Tao
A. Barnett
Jonathan Su
Cynthia Rudin
238
1,186
0
27 Jun 2018
Deep Ordinal Regression Network for Monocular Depth Estimation
Deep Ordinal Regression Network for Monocular Depth Estimation
Huan Fu
Biwei Huang
Chaohui Wang
Kayhan Batmanghelich
Dacheng Tao
MDE
481
1,731
0
06 Jun 2018
On the importance of single directions for generalization
On the importance of single directions for generalization
Ari S. Morcos
David Barrett
Neil C. Rabinowitz
M. Botvinick
64
333
0
19 Mar 2018
IM2HEIGHT: Height Estimation from Single Monocular Imagery via Fully
  Residual Convolutional-Deconvolutional Network
IM2HEIGHT: Height Estimation from Single Monocular Imagery via Fully Residual Convolutional-Deconvolutional Network
Lichao Mou
Xiaoxiang Zhu
MDE
60
120
0
28 Feb 2018
Decoupled Weight Decay Regularization
Decoupled Weight Decay Regularization
I. Loshchilov
Frank Hutter
OffRL
144
2,136
0
14 Nov 2017
Deep learning in remote sensing: a review
Deep learning in remote sensing: a review
Xiaoxiang Zhu
D. Tuia
Lichao Mou
Gui-Song Xia
Liangpei Zhang
Feng Xu
Friedrich Fraundorfer
74
1,611
0
11 Oct 2017
Interpretable Convolutional Neural Networks
Interpretable Convolutional Neural Networks
Quanshi Zhang
Ying Nian Wu
Song-Chun Zhu
FAtt
67
781
0
02 Oct 2017
Axiomatic Attribution for Deep Networks
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OOD
FAtt
188
5,989
0
04 Mar 2017
Semi-Supervised Deep Learning for Monocular Depth Map Prediction
Semi-Supervised Deep Learning for Monocular Depth Map Prediction
Yevhen Kuznietsov
J. Stückler
Bastian Leibe
MDE
SSL
147
670
0
09 Feb 2017
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based
  Localization
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
FAtt
297
20,003
0
07 Oct 2016
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.8K
150,115
0
22 Dec 2014
Depth Map Prediction from a Single Image using a Multi-Scale Deep
  Network
Depth Map Prediction from a Single Image using a Multi-Scale Deep Network
David Eigen
Christian Puhrsch
Rob Fergus
MDE
3DPC
3DV
230
4,056
0
09 Jun 2014
Auto-Encoding Variational Bayes
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
452
16,933
0
20 Dec 2013
Visualizing and Understanding Convolutional Networks
Visualizing and Understanding Convolutional Networks
Matthew D. Zeiler
Rob Fergus
FAtt
SSL
595
15,882
0
12 Nov 2013
1