ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.04182
  4. Cited By
HyperTransformer: Model Generation for Supervised and Semi-Supervised
  Few-Shot Learning

HyperTransformer: Model Generation for Supervised and Semi-Supervised Few-Shot Learning

11 January 2022
A. Zhmoginov
Mark Sandler
Max Vladymyrov
    ViT
ArXivPDFHTML

Papers citing "HyperTransformer: Model Generation for Supervised and Semi-Supervised Few-Shot Learning"

49 / 49 papers shown
Title
Hyper-Transforming Latent Diffusion Models
Hyper-Transforming Latent Diffusion Models
I. Peis
Batuhan Koyuncu
Isabel Valera
J. Frellsen
34
0
0
23 Apr 2025
Instruction-Guided Autoregressive Neural Network Parameter Generation
Instruction-Guided Autoregressive Neural Network Parameter Generation
Soro Bedionita
Bruno Andreis
Song Chong
Sung Ju Hwang
DiffM
42
0
0
02 Apr 2025
Structure Is Not Enough: Leveraging Behavior for Neural Network Weight Reconstruction
Structure Is Not Enough: Leveraging Behavior for Neural Network Weight Reconstruction
Léo Meynent
Ivan Melev
Konstantin Schurholt
Göran Kauermann
Damian Borth
47
2
0
21 Mar 2025
GeneralizeFormer: Layer-Adaptive Model Generation across Test-Time Distribution Shifts
GeneralizeFormer: Layer-Adaptive Model Generation across Test-Time Distribution Shifts
Sameer Ambekar
Zehao Xiao
Xiantong Zhen
Cees G. M. Snoek
OOD
65
0
0
15 Feb 2025
Neural Network Diffusion
Neural Network Diffusion
Kaili Wang
Dongwen Tang
Boya Zeng
Yida Yin
Zhaopan Xu
Yukun Zhou
Zelin Zang
Trevor Darrell
Zhuang Liu
Yang You
DiffM
56
5
0
03 Jan 2025
Meta-Exploiting Frequency Prior for Cross-Domain Few-Shot Learning
Meta-Exploiting Frequency Prior for Cross-Domain Few-Shot Learning
Fei Zhou
Peng Wang
Lei Zhang
Zhe Chen
Wei Wei
Chen Ding
Guosheng Lin
Yanning Zhang
34
1
0
03 Nov 2024
Enhancing Diversity in Bayesian Deep Learning via Hyperspherical Energy
  Minimization of CKA
Enhancing Diversity in Bayesian Deep Learning via Hyperspherical Energy Minimization of CKA
David Smerkous
Qinxun Bai
Fuxin Li
BDL
31
0
0
31 Oct 2024
Diffusing to the Top: Boost Graph Neural Networks with Minimal
  Hyperparameter Tuning
Diffusing to the Top: Boost Graph Neural Networks with Minimal Hyperparameter Tuning
Lequan Lin
Dai Shi
Andi Han
Zhiyong Wang
Junbin Gao
28
0
0
08 Oct 2024
When can transformers compositionally generalize in-context?
When can transformers compositionally generalize in-context?
Seijin Kobayashi
Simon Schug
Yassir Akram
Florian Redhardt
J. Oswald
Razvan Pascanu
Guillaume Lajoie
João Sacramento
ViT
26
0
0
17 Jul 2024
Make-An-Agent: A Generalizable Policy Network Generator with
  Behavior-Prompted Diffusion
Make-An-Agent: A Generalizable Policy Network Generator with Behavior-Prompted Diffusion
Yongyuan Liang
Tingqiang Xu
Kaizhe Hu
Guangqi Jiang
Furong Huang
Huazhe Xu
LM&Ro
VGen
DiffM
47
2
0
15 Jul 2024
On Understanding Attention-Based In-Context Learning for Categorical Data
On Understanding Attention-Based In-Context Learning for Categorical Data
Aaron T. Wang
William Convertino
Xiang Cheng
Ricardo Henao
Lawrence Carin
61
0
0
27 May 2024
LoGAH: Predicting 774-Million-Parameter Transformers using Graph
  HyperNetworks with 1/100 Parameters
LoGAH: Predicting 774-Million-Parameter Transformers using Graph HyperNetworks with 1/100 Parameters
Xinyu Zhou
Boris Knyazev
Alexia Jolicoeur-Martineau
Jie Fu
AI4CE
45
0
0
25 May 2024
Text-to-Model: Text-Conditioned Neural Network Diffusion for Train-Once-for-All Personalization
Text-to-Model: Text-Conditioned Neural Network Diffusion for Train-Once-for-All Personalization
Zexi Li
Lingzhi Gao
Chao Wu
AI4CE
DiffM
55
3
0
23 May 2024
Unleash Graph Neural Networks from Heavy Tuning
Unleash Graph Neural Networks from Heavy Tuning
Lequan Lin
Dai Shi
Andi Han
Zhiyong Wang
Junbin Gao
AI4CE
27
2
0
21 May 2024
HyperFast: Instant Classification for Tabular Data
HyperFast: Instant Classification for Tabular Data
David Bonet
D. M. Montserrat
Xavier Giró-i-Nieto
A. Ioannidis
46
15
0
22 Feb 2024
LDCA: Local Descriptors with Contextual Augmentation for Few-Shot
  Learning
LDCA: Local Descriptors with Contextual Augmentation for Few-Shot Learning
Maofa Wang
Bingchen Yan
36
0
0
24 Jan 2024
Learning to Generate Parameters of ConvNets for Unseen Image Data
Learning to Generate Parameters of ConvNets for Unseen Image Data
Shiye Wang
Kaituo Feng
Changsheng Li
Ye Yuan
Guoren Wang
31
1
0
18 Oct 2023
Evolution of Natural Language Processing Technology: Not Just Language
  Processing Towards General Purpose AI
Evolution of Natural Language Processing Technology: Not Just Language Processing Towards General Purpose AI
Masahiro Yamamoto
17
1
0
10 Oct 2023
On the Importance of Spatial Relations for Few-shot Action Recognition
On the Importance of Spatial Relations for Few-shot Action Recognition
Yilun Zhang
Yu Fu
Xingjun Ma
Lizhe Qi
Jingjing Chen
Zuxuan Wu
Yueping Jiang
ViT
19
6
0
14 Aug 2023
MetaDiff: Meta-Learning with Conditional Diffusion for Few-Shot Learning
MetaDiff: Meta-Learning with Conditional Diffusion for Few-Shot Learning
Baoquan Zhang
Chuyao Luo
Demin Yu
Huiwei Lin
Xutao Li
Yunming Ye
Bowen Zhang
DiffM
40
42
0
31 Jul 2023
Towards Self-Assembling Artificial Neural Networks through Neural
  Developmental Programs
Towards Self-Assembling Artificial Neural Networks through Neural Developmental Programs
Elias Najarro
Shyam Sudhakaran
S. Risi
28
15
0
17 Jul 2023
Generative Meta-Learning for Zero-Shot Relation Triplet Extraction
Generative Meta-Learning for Zero-Shot Relation Triplet Extraction
Wanli Li
T. Qian
Yi Song
Zeyu Zhang
Jiawei Li
Zhuang Chen
Lixin Zou
70
1
0
03 May 2023
Deep Learning for Cross-Domain Few-Shot Visual Recognition: A Survey
Deep Learning for Cross-Domain Few-Shot Visual Recognition: A Survey
Huali Xu
Shuaifeng Zhi
Shuzhou Sun
Vishal M. Patel
Li Liu
32
13
0
15 Mar 2023
Can We Scale Transformers to Predict Parameters of Diverse ImageNet
  Models?
Can We Scale Transformers to Predict Parameters of Diverse ImageNet Models?
Boris Knyazev
Doha Hwang
Simon Lacoste-Julien
AI4CE
31
17
0
07 Mar 2023
Out-of-distributional risk bounds for neural operators with applications
  to the Helmholtz equation
Out-of-distributional risk bounds for neural operators with applications to the Helmholtz equation
Jose Antonio Lara Benitez
Takashi Furuya
F. Faucher
Anastasis Kratsios
X. Tricoche
Maarten V. de Hoop
37
16
0
27 Jan 2023
Federated Automatic Differentiation
Federated Automatic Differentiation
Keith Rush
Zachary B. Charles
Zachary Garrett
FedML
34
1
0
18 Jan 2023
Transformers learn in-context by gradient descent
Transformers learn in-context by gradient descent
J. Oswald
Eyvind Niklasson
E. Randazzo
João Sacramento
A. Mordvintsev
A. Zhmoginov
Max Vladymyrov
MLT
30
429
0
15 Dec 2022
General-Purpose In-Context Learning by Meta-Learning Transformers
General-Purpose In-Context Learning by Meta-Learning Transformers
Louis Kirsch
James Harrison
Jascha Narain Sohl-Dickstein
Luke Metz
40
72
0
08 Dec 2022
Adapting Neural Models with Sequential Monte Carlo Dropout
Adapting Neural Models with Sequential Monte Carlo Dropout
Pamela Carreno-Medrano
Dana Kulić
Michael G. Burke
22
4
0
27 Oct 2022
Meta-Learning via Classifier(-free) Diffusion Guidance
Meta-Learning via Classifier(-free) Diffusion Guidance
Elvis Nava
Seijin Kobayashi
Yifei Yin
Robert K. Katzschmann
Benjamin Grewe
VLM
24
6
0
17 Oct 2022
Multi-Object Navigation with dynamically learned neural implicit
  representations
Multi-Object Navigation with dynamically learned neural implicit representations
Pierre Marza
L. Matignon
Olivier Simonin
Christian Wolf
32
23
0
11 Oct 2022
Hypernetwork approach to Bayesian MAML
Hypernetwork approach to Bayesian MAML
Piotr Borycki
Piotr Kubacki
Marcin Przewiȩźlikowski
Tomasz Kuśmierczyk
Jacek Tabor
P. Spurek
BDL
19
2
0
06 Oct 2022
Meta-Ensemble Parameter Learning
Meta-Ensemble Parameter Learning
Zhengcong Fei
Shuman Tian
Junshi Huang
Xiaoming Wei
Xiaolin K. Wei
OOD
41
2
0
05 Oct 2022
Model Zoos: A Dataset of Diverse Populations of Neural Network Models
Model Zoos: A Dataset of Diverse Populations of Neural Network Models
Konstantin Schurholt
Diyar Taskiran
Boris Knyazev
Xavier Giró-i-Nieto
Damian Borth
52
29
0
29 Sep 2022
Hyper-Representations as Generative Models: Sampling Unseen Neural
  Network Weights
Hyper-Representations as Generative Models: Sampling Unseen Neural Network Weights
Konstantin Schurholt
Boris Knyazev
Xavier Giró-i-Nieto
Damian Borth
55
38
0
29 Sep 2022
Expanding continual few-shot learning benchmarks to include recognition
  of specific instances
Expanding continual few-shot learning benchmarks to include recognition of specific instances
Gideon Kowadlo
Abdelrahman Ahmed
Amir Mayan
D. Rawlinson
CLL
11
0
0
26 Aug 2022
Few-Shot Learning Meets Transformer: Unified Query-Support Transformers
  for Few-Shot Classification
Few-Shot Learning Meets Transformer: Unified Query-Support Transformers for Few-Shot Classification
Xixi Wang
Tianlin Li
Bo Jiang
Bin Luo
34
42
0
26 Aug 2022
Hyper-Representations for Pre-Training and Transfer Learning
Hyper-Representations for Pre-Training and Transfer Learning
Konstantin Schurholt
Boris Knyazev
Xavier Giró-i-Nieto
Damian Borth
19
10
0
22 Jul 2022
HyperMAML: Few-Shot Adaptation of Deep Models with Hypernetworks
HyperMAML: Few-Shot Adaptation of Deep Models with Hypernetworks
Marcin Przewiȩźlikowski
P. Przybysz
Jacek Tabor
Maciej Ziȩba
P. Spurek
23
18
0
31 May 2022
Model-Free Opponent Shaping
Model-Free Opponent Shaping
Chris Xiaoxuan Lu
Timon Willi
Christian Schroeder de Witt
Jakob N. Foerster
19
43
0
03 May 2022
HyperNCA: Growing Developmental Networks with Neural Cellular Automata
HyperNCA: Growing Developmental Networks with Neural Cellular Automata
Elias Najarro
Shyam Sudhakaran
Claire Glanois
S. Risi
29
13
0
25 Apr 2022
HyperShot: Few-Shot Learning by Kernel HyperNetworks
HyperShot: Few-Shot Learning by Kernel HyperNetworks
Marcin Sendera
Marcin Przewiȩźlikowski
Konrad Karanowski
Maciej Ziȩba
Jacek Tabor
P. Spurek
VLM
27
27
0
21 Mar 2022
Self-Promoted Supervision for Few-Shot Transformer
Self-Promoted Supervision for Few-Shot Transformer
Bowen Dong
Pan Zhou
Shuicheng Yan
W. Zuo
ViT
22
28
0
14 Mar 2022
HyperMixer: An MLP-based Low Cost Alternative to Transformers
HyperMixer: An MLP-based Low Cost Alternative to Transformers
Florian Mai
Arnaud Pannatier
Fabio Fehr
Haolin Chen
François Marelli
F. Fleuret
James Henderson
29
11
0
07 Mar 2022
A Modern Self-Referential Weight Matrix That Learns to Modify Itself
A Modern Self-Referential Weight Matrix That Learns to Modify Itself
Kazuki Irie
Imanol Schlag
Róbert Csordás
Jürgen Schmidhuber
14
26
0
11 Feb 2022
Tutorial on amortized optimization
Tutorial on amortized optimization
Brandon Amos
OffRL
75
43
0
01 Feb 2022
Designing Universal Causal Deep Learning Models: The Geometric
  (Hyper)Transformer
Designing Universal Causal Deep Learning Models: The Geometric (Hyper)Transformer
Beatrice Acciaio
Anastasis Kratsios
G. Pammer
OOD
52
20
0
31 Jan 2022
Learning to Generate Task-Specific Adapters from Task Description
Learning to Generate Task-Specific Adapters from Task Description
Qinyuan Ye
Xiang Ren
115
29
0
02 Jan 2021
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
341
11,684
0
09 Mar 2017
1