ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.00409
  4. Cited By
Global convergence of optimized adaptive importance samplers
v1v2 (latest)

Global convergence of optimized adaptive importance samplers

2 January 2022
Ömer Deniz Akyildiz
ArXiv (abs)PDFHTML

Papers citing "Global convergence of optimized adaptive importance samplers"

34 / 34 papers shown
Title
Adaptively Optimised Adaptive Importance Samplers
Adaptively Optimised Adaptive Importance Samplers
Carlos Alberto Cardoso Correia Perello
Ömer Deniz Akyildiz
58
1
0
18 Jul 2023
Gradient-based Adaptive Importance Samplers
Gradient-based Adaptive Importance Samplers
Victor Elvira
Émilie Chouzenoux
Ömer Deniz Akyildiz
Luca Martino
DiffM
83
10
0
19 Oct 2022
Hamiltonian Adaptive Importance Sampling
Hamiltonian Adaptive Importance Sampling
Ali Mousavi
R. Monsefi
Victor Elvira
73
13
0
27 Sep 2022
Non-asymptotic estimates for TUSLA algorithm for non-convex learning
  with applications to neural networks with ReLU activation function
Non-asymptotic estimates for TUSLA algorithm for non-convex learning with applications to neural networks with ReLU activation function
Dongjae Lim
Ariel Neufeld
Sotirios Sabanis
Ying Zhang
80
20
0
19 Jul 2021
Variational Refinement for Importance Sampling Using the Forward
  Kullback-Leibler Divergence
Variational Refinement for Importance Sampling Using the Forward Kullback-Leibler Divergence
Ghassen Jerfel
S. Wang
Clara Fannjiang
Katherine A. Heller
Yi-An Ma
Michael I. Jordan
BDL
129
40
0
30 Jun 2021
Polygonal Unadjusted Langevin Algorithms: Creating stable and efficient
  adaptive algorithms for neural networks
Polygonal Unadjusted Langevin Algorithms: Creating stable and efficient adaptive algorithms for neural networks
Dong-Young Lim
Sotirios Sabanis
95
12
0
28 May 2021
MCMC-driven importance samplers
MCMC-driven importance samplers
F. Llorente
E. Curbelo
Luca Martino
Victor Elvira
D. Delgado
85
11
0
06 May 2021
Faster Convergence of Stochastic Gradient Langevin Dynamics for
  Non-Log-Concave Sampling
Faster Convergence of Stochastic Gradient Langevin Dynamics for Non-Log-Concave Sampling
Difan Zou
Pan Xu
Quanquan Gu
95
36
0
19 Oct 2020
Bayesian Update with Importance Sampling: Required Sample Size
Bayesian Update with Importance Sampling: Required Sample Size
D. Sanz-Alonso
Zijian Wang
89
6
0
22 Sep 2020
Decision-Making with Auto-Encoding Variational Bayes
Decision-Making with Auto-Encoding Variational Bayes
Romain Lopez
Pierre Boyeau
Nir Yosef
Michael I. Jordan
Jeffrey Regier
BDL
562
10,591
0
17 Feb 2020
Nonasymptotic analysis of Stochastic Gradient Hamiltonian Monte Carlo
  under local conditions for nonconvex optimization
Nonasymptotic analysis of Stochastic Gradient Hamiltonian Monte Carlo under local conditions for nonconvex optimization
Ömer Deniz Akyildiz
Sotirios Sabanis
80
17
0
13 Feb 2020
Nonasymptotic estimates for Stochastic Gradient Langevin Dynamics under
  local conditions in nonconvex optimization
Nonasymptotic estimates for Stochastic Gradient Langevin Dynamics under local conditions in nonconvex optimization
Ying Zhang
Ömer Deniz Akyildiz
Theodoros Damoulas
Sotirios Sabanis
102
47
0
04 Oct 2019
Convergence rates for optimised adaptive importance samplers
Convergence rates for optimised adaptive importance samplers
Ömer Deniz Akyildiz
Joaquín Míguez
115
31
0
28 Mar 2019
The promises and pitfalls of Stochastic Gradient Langevin Dynamics
The promises and pitfalls of Stochastic Gradient Langevin Dynamics
N. Brosse
Alain Durmus
Eric Moulines
74
78
0
25 Nov 2018
Global Non-convex Optimization with Discretized Diffusions
Global Non-convex Optimization with Discretized Diffusions
Murat A. Erdogdu
Lester W. Mackey
Ohad Shamir
87
105
0
29 Oct 2018
Variance reduction properties of the reparameterization trick
Variance reduction properties of the reparameterization trick
Ming Xu
M. Quiroz
Robert Kohn
Scott A. Sisson
AAML
103
69
0
27 Sep 2018
Global Convergence of Stochastic Gradient Hamiltonian Monte Carlo for
  Non-Convex Stochastic Optimization: Non-Asymptotic Performance Bounds and
  Momentum-Based Acceleration
Global Convergence of Stochastic Gradient Hamiltonian Monte Carlo for Non-Convex Stochastic Optimization: Non-Asymptotic Performance Bounds and Momentum-Based Acceleration
Xuefeng Gao
Mert Gurbuzbalaban
Lingjiong Zhu
70
60
0
12 Sep 2018
Rethinking the Effective Sample Size
Rethinking the Effective Sample Size
Victor Elvira
Luca Martino
Christian P. Robert
54
71
0
11 Sep 2018
Neural Importance Sampling
Neural Importance Sampling
Thomas Müller
Brian McWilliams
Fabrice Rousselle
Markus Gross
Jan Novák
75
364
0
11 Aug 2018
Asymptotic optimality of adaptive importance sampling
Asymptotic optimality of adaptive importance sampling
B. Delyon
François Portier
43
29
0
04 Jun 2018
Global Convergence of Langevin Dynamics Based Algorithms for Nonconvex
  Optimization
Global Convergence of Langevin Dynamics Based Algorithms for Nonconvex Optimization
Pan Xu
Jinghui Chen
Difan Zou
Quanquan Gu
90
205
0
20 Jul 2017
Non-convex learning via Stochastic Gradient Langevin Dynamics: a
  nonasymptotic analysis
Non-convex learning via Stochastic Gradient Langevin Dynamics: a nonasymptotic analysis
Maxim Raginsky
Alexander Rakhlin
Matus Telgarsky
86
521
0
13 Feb 2017
Langevin Incremental Mixture Importance Sampling
Langevin Incremental Mixture Importance Sampling
Matteo Fasiolo
Flávio Eler De Melo
Simon Maskell
50
13
0
21 Nov 2016
Importance Sampling and Necessary Sample Size: an Information Theory
  Approach
Importance Sampling and Necessary Sample Size: an Information Theory Approach
D. Sanz-Alonso
65
32
0
31 Aug 2016
Improving Population Monte Carlo: Alternative Weighting and Resampling
  Schemes
Improving Population Monte Carlo: Alternative Weighting and Resampling Schemes
Victor Elvira
Luca Martino
D. Luengo
M. Bugallo
79
85
0
10 Jul 2016
Importance Sampling: Intrinsic Dimension and Computational Cost
Importance Sampling: Intrinsic Dimension and Computational Cost
S. Agapiou
O. Papaspiliopoulos
D. Sanz-Alonso
Andrew M. Stuart
104
162
0
19 Nov 2015
Generalized Multiple Importance Sampling
Generalized Multiple Importance Sampling
Victor Elvira
Luca Martino
D. Luengo
M. Bugallo
107
145
0
10 Nov 2015
Layered Adaptive Importance Sampling
Layered Adaptive Importance Sampling
Luca Martino
Victor Elvira
D. Luengo
J. Corander
88
108
0
18 May 2015
Adaptive importance sampling for control and inference
Adaptive importance sampling for control and inference
H. Kappen
Hans Christian Ruiz
101
101
0
07 May 2015
Adaptive Importance Sampling via Stochastic Convex Programming
Adaptive Importance Sampling via Stochastic Convex Programming
Ernest K. Ryu
Stephen P. Boyd
84
27
0
16 Dec 2014
Stochastic Gradient Hamiltonian Monte Carlo
Stochastic Gradient Hamiltonian Monte Carlo
Tianqi Chen
E. Fox
Carlos Guestrin
BDL
130
913
0
17 Feb 2014
Adaptive methods for sequential importance sampling with application to
  state space models
Adaptive methods for sequential importance sampling with application to state space models
Julien Cornebise
Eric Moulines
Jimmy Olsson
131
86
0
01 Mar 2008
Adaptive Importance Sampling in General Mixture Classes
Adaptive Importance Sampling in General Mixture Classes
Olivier Cappé
Randal Douc
Arnaud Guillin
Jean-Michel Marin
Christian P. Robert
259
304
0
23 Oct 2007
Convergence of adaptive mixtures of importance sampling schemes
Convergence of adaptive mixtures of importance sampling schemes
Randal Douc
Arnaud Guillin
Jean-Michel Marin
Christian P. Robert
680
114
0
06 Aug 2007
1