ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.13469
  4. Cited By
Learning Optimization Proxies for Large-Scale Security-Constrained
  Economic Dispatch

Learning Optimization Proxies for Large-Scale Security-Constrained Economic Dispatch

27 December 2021
Wenbo Chen
Seonho Park
Mathieu Tanneau
Pascal Van Hentenryck
ArXivPDFHTML

Papers citing "Learning Optimization Proxies for Large-Scale Security-Constrained Economic Dispatch"

26 / 26 papers shown
Title
PROPEL: Supervised and Reinforcement Learning for Large-Scale Supply Chain Planning
PROPEL: Supervised and Reinforcement Learning for Large-Scale Supply Chain Planning
Vahid Eghbal Akhlaghi
Reza Zandehshahvar
Pascal Van Hentenryck
31
0
0
10 Apr 2025
Differentiable Optimization for Deep Learning-Enhanced DC Approximation of AC Optimal Power Flow
Differentiable Optimization for Deep Learning-Enhanced DC Approximation of AC Optimal Power Flow
Andrew Rosemberg
Michael Klamkin
AI4CE
31
0
0
22 Mar 2025
Compact Optimality Verification for Optimization Proxies
Compact Optimality Verification for Optimization Proxies
Wenbo Chen
Haoruo Zhao
Mathieu Tanneau
Pascal Van Hentenryck
38
0
0
31 May 2024
Physics-Informed Heterogeneous Graph Neural Networks for DC Blocker
  Placement
Physics-Informed Heterogeneous Graph Neural Networks for DC Blocker Placement
Hongwei Jin
Prasanna Balaprakash
Allen Zou
Pieter Ghysels
Aditi S. Krishnapriyan
Adam Mate
Arthur Barnes
Russell Bent
AI4CE
24
1
0
16 May 2024
Self-Supervised Learning for Large-Scale Preventive Security Constrained
  DC Optimal Power Flow
Self-Supervised Learning for Large-Scale Preventive Security Constrained DC Optimal Power Flow
Seonho Park
Pascal Van Hentenryck
AI4CE
31
0
0
29 Nov 2023
Unit Commitment Predictor With a Performance Guarantee: A Support Vector
  Machine Classifier
Unit Commitment Predictor With a Performance Guarantee: A Support Vector Machine Classifier
Farzaneh Pourahmadi
J. Kazempour
22
3
0
07 Oct 2023
Learning Optimal Power Flow Value Functions with Input-Convex Neural
  Networks
Learning Optimal Power Flow Value Functions with Input-Convex Neural Networks
Andrew W. Rosemberg
Mathieu Tanneau
Bruno Fanzeres
Joaquim Dias Garcia
Pascal Van Hentenryck
25
3
0
06 Oct 2023
Dual Conic Proxies for AC Optimal Power Flow
Dual Conic Proxies for AC Optimal Power Flow
Guancheng Qiu
Mathieu Tanneau
Pascal Van Hentenryck
31
8
0
04 Oct 2023
Landscape Surrogate: Learning Decision Losses for Mathematical
  Optimization Under Partial Information
Landscape Surrogate: Learning Decision Losses for Mathematical Optimization Under Partial Information
Arman Zharmagambetov
Brandon Amos
Aaron Ferber
Taoan Huang
B. Dilkina
Yuandong Tian
AI4CE
30
10
0
18 Jul 2023
Optimization-based Learning for Dynamic Load Planning in Trucking
  Service Networks
Optimization-based Learning for Dynamic Load Planning in Trucking Service Networks
Ritesh Ojha
Wenbo Chen
Hanyu Zhang
Reem Khir
A. Erera
Pascal Van Hentenryck
35
2
0
08 Jul 2023
AI4OPT: AI Institute for Advances in Optimization
AI4OPT: AI Institute for Advances in Optimization
Pascal Van Hentenryck
Kevin Dalmeijer
24
4
0
05 Jul 2023
End-to-End Feasible Optimization Proxies for Large-Scale Economic
  Dispatch
End-to-End Feasible Optimization Proxies for Large-Scale Economic Dispatch
Wenbo Chen
Mathieu Tanneau
Pascal Van Hentenryck
26
29
0
23 Apr 2023
A Physics-Informed Machine Learning for Electricity Markets: A NYISO
  Case Study
A Physics-Informed Machine Learning for Electricity Markets: A NYISO Case Study
Robert Ferrando
Laurent Pagnier
R. Mieth
Zhirui Liang
Y. Dvorkin
D. Bienstock
Michael Chertkov
26
7
0
31 Mar 2023
Approximating Energy Market Clearing and Bidding With Model-Based
  Reinforcement Learning
Approximating Energy Market Clearing and Bidding With Model-Based Reinforcement Learning
Thomas Wolgast
Astrid Nieße
23
1
0
03 Mar 2023
Compact Optimization Learning for AC Optimal Power Flow
Compact Optimization Learning for AC Optimal Power Flow
Seonho Park
Wenbo Chen
Terrence W.K. Mak
Pascal Van Hentenryck
27
17
0
21 Jan 2023
Confidence-Aware Graph Neural Networks for Learning Reliability
  Assessment Commitments
Confidence-Aware Graph Neural Networks for Learning Reliability Assessment Commitments
Seonho Park
Wenbo Chen
Dahyeon Han
Mathieu Tanneau
Pascal Van Hentenryck
38
27
0
28 Nov 2022
Just-In-Time Learning for Operational Risk Assessment in Power Grids
Just-In-Time Learning for Operational Risk Assessment in Power Grids
Oliver Stover
Pranav M. Karve
S. Mahadevan
Wenbo Chen
Haoruo Zhao
Mathieu Tanneau
Pascal Van Hentenryck
21
3
0
26 Sep 2022
A Comprehensive Review of Digital Twin -- Part 1: Modeling and Twinning
  Enabling Technologies
A Comprehensive Review of Digital Twin -- Part 1: Modeling and Twinning Enabling Technologies
Adam Thelen
Xiaoge Zhang
Olga Fink
Yan Lu
Sayan Ghosh
B. Youn
Michael D. Todd
S. Mahadevan
Chao Hu
Zhen Hu
SyDa
AI4CE
27
187
0
26 Aug 2022
Self-Supervised Primal-Dual Learning for Constrained Optimization
Self-Supervised Primal-Dual Learning for Constrained Optimization
Seonho Park
Pascal Van Hentenryck
35
46
0
18 Aug 2022
Bucketized Active Sampling for Learning ACOPF
Bucketized Active Sampling for Learning ACOPF
Michael Klamkin
Mathieu Tanneau
Terrence W.K. Mak
Pascal Van Hentenryck
13
2
0
16 Aug 2022
Machine Learning for Electricity Market Clearing
Machine Learning for Electricity Market Clearing
Laurent Pagnier
Robert Ferrando
Y. Dvorkin
Michael Chertkov
24
1
0
23 May 2022
Learning Regionally Decentralized AC Optimal Power Flows with ADMM
Learning Regionally Decentralized AC Optimal Power Flows with ADMM
Terrence W.K. Mak
Minas Chatzos
Mathieu Tanneau
Pascal Van Hentenryck
25
27
0
08 May 2022
Risk-Aware Control and Optimization for High-Renewable Power Grids
Risk-Aware Control and Optimization for High-Renewable Power Grids
Neil Barry
Minas Chatzos
Wenbo Chen
Dahye Han
Chao-Ming Huang
...
Mathieu Tanneau
Pascal Van Hentenryck
Shangkun Wang
Hanyu Zhang
Haoruo Zhao
30
7
0
02 Apr 2022
Spatial Network Decomposition for Fast and Scalable AC-OPF Learning
Spatial Network Decomposition for Fast and Scalable AC-OPF Learning
Minas Chatzos
Terrence W.K. Mak
Pascal Van Hentenryck
AI4CE
45
38
0
17 Jan 2021
Predicting AC Optimal Power Flows: Combining Deep Learning and
  Lagrangian Dual Methods
Predicting AC Optimal Power Flows: Combining Deep Learning and Lagrangian Dual Methods
Ferdinando Fioretto
Terrence W.K. Mak
Pascal Van Hentenryck
AI4CE
81
199
0
19 Sep 2019
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,138
0
06 Jun 2015
1