50
1
v1v2 (latest)

Self-Supervised Learning for Large-Scale Preventive Security Constrained DC Optimal Power Flow

Pascal Van Hentenryck
Abstract

Security-Constrained Optimal Power Flow (SCOPF) plays a crucial role in power grid stability but becomes increasingly complex as systems grow. This paper introduces PDL-SCOPF, a self-supervised end-to-end primal-dual learning framework for producing near-optimal solutions to large-scale SCOPF problems in milliseconds. Indeed, PDL-SCOPF remedies the limitations of supervised counterparts that rely on training instances with their optimal solutions, which becomes impractical for large-scale SCOPF problems. PDL-SCOPF mimics an Augmented Lagrangian Method (ALM) for training primal and dual networks that learn the primal solutions and the Lagrangian multipliers, respectively, to the unconstrained optimizations. In addition, PDL-SCOPF incorporates a repair layer to ensure the feasibility of the power balance in the nominal case, and a binary search layer to compute, using the Automatic Primary Response (APR), the generator dispatches in the contingencies. The resulting differentiable program can then be trained end-to-end using the objective function of the SCOPF and the power balance constraints of the contingencies. Experimental results demonstrate that the PDL-SCOPF delivers accurate feasible solutions with minimal optimality gaps. The framework underlying PDL-SCOPF aims at bridging the gap between traditional optimization methods and machine learning, highlighting the potential of self-supervised end-to-end primal-dual learning for large-scale optimization tasks.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.