ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.06054
  4. Cited By
Deterministic and Discriminative Imitation (D2-Imitation): Revisiting
  Adversarial Imitation for Sample Efficiency
v1v2v3 (latest)

Deterministic and Discriminative Imitation (D2-Imitation): Revisiting Adversarial Imitation for Sample Efficiency

11 December 2021
Mingfei Sun
Sam Devlin
Katja Hofmann
Shimon Whiteson
ArXiv (abs)PDFHTML

Papers citing "Deterministic and Discriminative Imitation (D2-Imitation): Revisiting Adversarial Imitation for Sample Efficiency"

14 / 14 papers shown
Title
Primal Wasserstein Imitation Learning
Primal Wasserstein Imitation Learning
Robert Dadashi
Léonard Hussenot
Matthieu Geist
Olivier Pietquin
91
129
0
08 Jun 2020
Imitation Learning via Off-Policy Distribution Matching
Imitation Learning via Off-Policy Distribution Matching
Ilya Kostrikov
Ofir Nachum
Jonathan Tompson
OODOffRL
158
205
0
10 Dec 2019
A Divergence Minimization Perspective on Imitation Learning Methods
A Divergence Minimization Perspective on Imitation Learning Methods
Seyed Kamyar Seyed Ghasemipour
R. Zemel
S. Gu
83
250
0
06 Nov 2019
Random Expert Distillation: Imitation Learning via Expert Policy Support
  Estimation
Random Expert Distillation: Imitation Learning via Expert Policy Support Estimation
Ruohan Wang
C. Ciliberto
P. Amadori
Y. Demiris
73
62
0
16 May 2019
Breaking the Curse of Horizon: Infinite-Horizon Off-Policy Estimation
Breaking the Curse of Horizon: Infinite-Horizon Off-Policy Estimation
Qiang Liu
Lihong Li
Ziyang Tang
Dengyong Zhou
OffRL
174
356
0
29 Oct 2018
Discriminator-Actor-Critic: Addressing Sample Inefficiency and Reward
  Bias in Adversarial Imitation Learning
Discriminator-Actor-Critic: Addressing Sample Inefficiency and Reward Bias in Adversarial Imitation Learning
Ilya Kostrikov
Kumar Krishna Agrawal
Debidatta Dwibedi
Sergey Levine
Jonathan Tompson
108
259
0
09 Sep 2018
Addressing Function Approximation Error in Actor-Critic Methods
Addressing Function Approximation Error in Actor-Critic Methods
Scott Fujimoto
H. V. Hoof
David Meger
OffRL
200
5,226
0
26 Feb 2018
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement
  Learning with a Stochastic Actor
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor
Tuomas Haarnoja
Aurick Zhou
Pieter Abbeel
Sergey Levine
317
8,432
0
04 Jan 2018
Improved Training of Wasserstein GANs
Improved Training of Wasserstein GANs
Ishaan Gulrajani
Faruk Ahmed
Martín Arjovsky
Vincent Dumoulin
Aaron Courville
GAN
230
9,568
0
31 Mar 2017
Generative Adversarial Imitation Learning
Generative Adversarial Imitation Learning
Jonathan Ho
Stefano Ermon
GAN
165
812
0
10 Jun 2016
OpenAI Gym
OpenAI Gym
Greg Brockman
Vicki Cheung
Ludwig Pettersson
Jonas Schneider
John Schulman
Jie Tang
Wojciech Zaremba
OffRLODL
225
27
0
05 Jun 2016
Continuous control with deep reinforcement learning
Continuous control with deep reinforcement learning
Timothy Lillicrap
Jonathan J. Hunt
Alexander Pritzel
N. Heess
Tom Erez
Yuval Tassa
David Silver
Daan Wierstra
332
13,295
0
09 Sep 2015
On Convergence of Emphatic Temporal-Difference Learning
On Convergence of Emphatic Temporal-Difference Learning
Huizhen Yu
OffRL
83
73
0
08 Jun 2015
High-Dimensional Continuous Control Using Generalized Advantage
  Estimation
High-Dimensional Continuous Control Using Generalized Advantage Estimation
John Schulman
Philipp Moritz
Sergey Levine
Michael I. Jordan
Pieter Abbeel
OffRL
139
3,442
0
08 Jun 2015
1