ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.06054
20
4
v1v2v3 (latest)

Deterministic and Discriminative Imitation (D2-Imitation): Revisiting Adversarial Imitation for Sample Efficiency

11 December 2021
Mingfei Sun
Sam Devlin
Katja Hofmann
Shimon Whiteson
ArXiv (abs)PDFHTML
Abstract

Sample efficiency is crucial for imitation learning methods to be applicable in real-world applications. Many studies improve sample efficiency by extending adversarial imitation to be off-policy regardless of the fact that these off-policy extensions could either change the original objective or involve complicated optimization. We revisit the foundation of adversarial imitation and propose an off-policy sample efficient approach that requires no adversarial training or min-max optimization. Our formulation capitalizes on two key insights: (1) the similarity between the Bellman equation and the stationary state-action distribution equation allows us to derive a novel temporal difference (TD) learning approach; and (2) the use of a deterministic policy simplifies the TD learning. Combined, these insights yield a practical algorithm, Deterministic and Discriminative Imitation (D2-Imitation), which operates by first partitioning samples into two replay buffers and then learning a deterministic policy via off-policy reinforcement learning. Our empirical results show that D2-Imitation is effective in achieving good sample efficiency, outperforming several off-policy extension approaches of adversarial imitation on many control tasks.

View on arXiv
Comments on this paper