ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.03769
  4. Cited By
Machine Learning in the Search for New Fundamental Physics

Machine Learning in the Search for New Fundamental Physics

7 December 2021
G. Karagiorgi
Gregor Kasieczka
S. Kravitz
Benjamin Nachman
David Shih
    AI4CE
ArXivPDFHTML

Papers citing "Machine Learning in the Search for New Fundamental Physics"

33 / 33 papers shown
Title
Optimal Equivariant Architectures from the Symmetries of Matrix-Element
  Likelihoods
Optimal Equivariant Architectures from the Symmetries of Matrix-Element Likelihoods
Daniel Maître
Vishal S. Ngairangbam
M. Spannowsky
29
4
0
24 Oct 2024
NeuralMAG: Fast and Generalizable Micromagnetic Simulation with Deep
  Neural Nets
NeuralMAG: Fast and Generalizable Micromagnetic Simulation with Deep Neural Nets
Yunqi Cai
Jiangnan Li
Dong Wang
OOD
AI4CE
26
0
0
19 Oct 2024
KAN we improve on HEP classification tasks? Kolmogorov-Arnold Networks
  applied to an LHC physics example
KAN we improve on HEP classification tasks? Kolmogorov-Arnold Networks applied to an LHC physics example
Johannes Erdmann
F. Mausolf
Jan Lukas Späh
36
4
0
05 Aug 2024
Universal New Physics Latent Space
Universal New Physics Latent Space
Anna Hallin
Gregor Kasieczka
Sabine Kraml
A. Lessa
L. Moureaux
Tore von Schwartz
David Shih
AI4CE
28
0
0
29 Jul 2024
Weak baselines and reporting biases lead to overoptimism in machine
  learning for fluid-related partial differential equations
Weak baselines and reporting biases lead to overoptimism in machine learning for fluid-related partial differential equations
N. McGreivy
Ammar Hakim
AI4CE
29
42
0
09 Jul 2024
Quantum Vision Transformers for Quark-Gluon Classification
Quantum Vision Transformers for Quark-Gluon Classification
Marçal Comajoan Cara
Gopal Ramesh Dahale
Zhongtian Dong
Roy T. Forestano
S. Gleyzer
...
Kyoungchul Kong
Tom Magorsch
Konstantin T. Matchev
Katia Matcheva
Eyup B. Unlu
45
9
0
16 May 2024
Moments of Clarity: Streamlining Latent Spaces in Machine Learning using
  Moment Pooling
Moments of Clarity: Streamlining Latent Spaces in Machine Learning using Moment Pooling
Rikab Gambhir
Athis Osathapan
Jesse Thaler
30
3
0
13 Mar 2024
OmniJet-$α$: The first cross-task foundation model for particle
  physics
OmniJet-ααα: The first cross-task foundation model for particle physics
Joschka Birk
Anna Hallin
Gregor Kasieczka
AI4CE
35
22
0
08 Mar 2024
Chaining thoughts and LLMs to learn DNA structural biophysics
Chaining thoughts and LLMs to learn DNA structural biophysics
Tyler D. Ross
Ashwin Gopinath
AI4CE
31
2
0
02 Mar 2024
A cyclical route linking fundamental mechanism and AI algorithm: An
  example from tuning Poisson's ratio in amorphous networks
A cyclical route linking fundamental mechanism and AI algorithm: An example from tuning Poisson's ratio in amorphous networks
Changliang Zhu
Chenchao Fang
Zhipeng Jin
Baowen Li
Xiangying Shen
Lei Xu
6
5
0
06 Dec 2023
Machine learning in physics: a short guide
Machine learning in physics: a short guide
F. A. Rodrigues
PINN
AI4CE
11
7
0
16 Oct 2023
Graph-enabled Reinforcement Learning for Time Series Forecasting with
  Adaptive Intelligence
Graph-enabled Reinforcement Learning for Time Series Forecasting with Adaptive Intelligence
T. Shaik
Xiaohui Tao
Haoran Xie
Lin Li
Jianming Yong
Yuefeng Li
AI4TS
24
2
0
18 Sep 2023
Flows for Flows: Morphing one Dataset into another with Maximum
  Likelihood Estimation
Flows for Flows: Morphing one Dataset into another with Maximum Likelihood Estimation
T. Golling
Samuel Klein
R. Mastandrea
Benjamin Nachman
J. A. Raine
OOD
AI4CE
11
4
0
12 Sep 2023
Scattering with Neural Operators
Scattering with Neural Operators
Sebastian Mizera
AI4CE
27
9
0
28 Aug 2023
Evolving Scientific Discovery by Unifying Data and Background Knowledge
  with AI Hilbert
Evolving Scientific Discovery by Unifying Data and Background Knowledge with AI Hilbert
Ryan Cory-Wright
Cristina Cornelio
S. Dash
Bachir El Khadir
L. Horesh
11
9
0
18 Aug 2023
Non-parametric Hypothesis Tests for Distributional Group Symmetry
Non-parametric Hypothesis Tests for Distributional Group Symmetry
Ke-Li Chiu
Benjamin Bloem-Reddy
11
7
0
28 Jul 2023
Deep Learning-Based Spatiotemporal Multi-Event Reconstruction for Delay
  Line Detectors
Deep Learning-Based Spatiotemporal Multi-Event Reconstruction for Delay Line Detectors
Marco Knipfer
S. Meier
J. Heimerl
P. Hommelhoff
S. Gleyzer
21
3
0
13 Jun 2023
High-dimensional and Permutation Invariant Anomaly Detection
High-dimensional and Permutation Invariant Anomaly Detection
Vinicius Mikuni
Benjamin Nachman
DiffM
19
16
0
06 Jun 2023
IDToolkit: A Toolkit for Benchmarking and Developing Inverse Design
  Algorithms in Nanophotonics
IDToolkit: A Toolkit for Benchmarking and Developing Inverse Design Algorithms in Nanophotonics
Jia-Qi Yang
Yucheng Xu
Jianwei Shen
Ke-Bin Fan
De-Chuan Zhan
Yang Yang
26
1
0
30 May 2023
Deep symbolic regression for physics guided by units constraints: toward
  the automated discovery of physical laws
Deep symbolic regression for physics guided by units constraints: toward the automated discovery of physical laws
Wassim Tenachi
Rodrigo Ibata
F. Diakogiannis
AI4CE
6
67
0
06 Mar 2023
Resonant Anomaly Detection with Multiple Reference Datasets
Resonant Anomaly Detection with Multiple Reference Datasets
Mayee F. Chen
Benjamin Nachman
Frederic Sala
25
5
0
20 Dec 2022
Feature Selection with Distance Correlation
Feature Selection with Distance Correlation
Ranit Das
Gregor Kasieczka
David Shih
21
14
0
30 Nov 2022
Machine-Learned Exclusion Limits without Binning
Machine-Learned Exclusion Limits without Binning
E. Arganda
Andrés D. Pérez
M. D. L. Rios
Rosa María Sandá Seoane
30
9
0
09 Nov 2022
Benchmarking energy consumption and latency for neuromorphic computing
  in condensed matter and particle physics
Benchmarking energy consumption and latency for neuromorphic computing in condensed matter and particle physics
Dominique J. Kösters
Bryan A. Kortman
I. Boybat
Elena Ferro
Sagar Dolas
...
T. Rasing
H. Riel
A. Sebastian
S. Caron
J. Mentink
43
13
0
21 Sep 2022
Machine learning based surrogate models for microchannel heat sink
  optimization
Machine learning based surrogate models for microchannel heat sink optimization
Ante Sikirica
L. Grbčić
L. Kranjčević
TPM
AI4CE
19
38
0
20 Aug 2022
Data Science and Machine Learning in Education
Data Science and Machine Learning in Education
G. Benelli
Thomas Y. Chen
Javier Mauricio Duarte
Matthew Feickert
Matthew Graham
...
K. Terao
S. Thais
A. Roy
J. Vlimant
G. Chachamis
AI4CE
26
5
0
19 Jul 2022
Learning topological defects formation with neural networks in a quantum
  phase transition
Learning topological defects formation with neural networks in a quantum phase transition
Han-Qing Shi
Hai-Qing Zhang
24
2
0
14 Apr 2022
On scientific understanding with artificial intelligence
On scientific understanding with artificial intelligence
Mario Krenn
R. Pollice
S. Guo
Matteo Aldeghi
Alba Cervera-Lierta
...
Florian Hase
A. Jinich
AkshatKumar Nigam
Zhenpeng Yao
Alán Aspuru-Guzik
25
185
0
04 Apr 2022
Leveraging universality of jet taggers through transfer learning
Leveraging universality of jet taggers through transfer learning
F. Dreyer
Radoslaw Grabarczyk
P. Monni
13
17
0
11 Mar 2022
Topological Obstructions to Autoencoding
Topological Obstructions to Autoencoding
Joshua D. Batson
C. G. Haaf
Yonatan Kahn
Daniel A. Roberts
AI4CE
34
37
0
16 Feb 2021
A Survey on Bias and Fairness in Machine Learning
A Survey on Bias and Fairness in Machine Learning
Ninareh Mehrabi
Fred Morstatter
N. Saxena
Kristina Lerman
Aram Galstyan
SyDa
FaML
323
4,203
0
23 Aug 2019
Fast inference of deep neural networks in FPGAs for particle physics
Fast inference of deep neural networks in FPGAs for particle physics
Javier Mauricio Duarte
Song Han
Philip C. Harris
S. Jindariani
E. Kreinar
...
J. Ngadiuba
M. Pierini
R. Rivera
N. Tran
Zhenbin Wu
AI4CE
75
386
0
16 Apr 2018
Revealing Fundamental Physics from the Daya Bay Neutrino Experiment
  using Deep Neural Networks
Revealing Fundamental Physics from the Daya Bay Neutrino Experiment using Deep Neural Networks
Evan Racah
Seyoon Ko
Peter Sadowski
W. Bhimji
C. Tull
Sang-Yun Oh
Pierre Baldi
P. Prabhat
32
32
0
28 Jan 2016
1