Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2112.03555
Cited By
v1
v2
v3 (latest)
FedDAG: Federated DAG Structure Learning
7 December 2021
Erdun Gao
Junjia Chen
Li Shen
Tongliang Liu
Biwei Huang
H. Bondell
FedML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"FedDAG: Federated DAG Structure Learning"
48 / 48 papers shown
Title
MissDAG: Causal Discovery in the Presence of Missing Data with Continuous Additive Noise Models
Erdun Gao
Ignavier Ng
Biwei Huang
Li Shen
Wei Huang
Tongliang Liu
Kun Zhang
H. Bondell
CML
107
23
0
27 May 2022
Federated Learning with Partial Model Personalization
Krishna Pillutla
Kshitiz Malik
Abdel-rahman Mohamed
Michael G. Rabbat
Maziar Sanjabi
Lin Xiao
FedML
83
166
0
08 Apr 2022
Federated Graph Neural Networks: Overview, Techniques and Challenges
R. Liu
Pengwei Xing
Zichao Deng
Anran Li
Cuntai Guan
Han Yu
FedML
91
83
0
15 Feb 2022
gCastle: A Python Toolbox for Causal Discovery
Keli Zhang
Shengyu Zhu
Marcus Kalander
Ignavier Ng
Junjian Ye
Zhitang Chen
Lujia Pan
CML
96
61
0
30 Nov 2021
Towards Federated Bayesian Network Structure Learning with Continuous Optimization
Ignavier Ng
Kun Zhang
FedML
66
38
0
18 Oct 2021
A survey of Bayesian Network structure learning
N. K. Kitson
Anthony C. Constantinou
Zhi-gao Guo
Yang Liu
Kiattikun Chobtham
CML
69
190
0
23 Sep 2021
Learning Neural Causal Models with Active Interventions
Nino Scherrer
O. Bilaniuk
Yashas Annadani
Anirudh Goyal
Patrick Schwab
Bernhard Schölkopf
Michael C. Mozer
Yoshua Bengio
Stefan Bauer
Nan Rosemary Ke
CML
95
43
0
06 Sep 2021
Federated Graph Classification over Non-IID Graphs
Han Xie
Jing Ma
Li Xiong
Carl Yang
FedML
76
161
0
25 Jun 2021
DAGs with No Curl: An Efficient DAG Structure Learning Approach
Yue Yu
Tian Gao
Naiyu Yin
Q. Ji
CML
62
60
0
14 Jun 2021
Ordering-Based Causal Discovery with Reinforcement Learning
Xiaoqiang Wang
Yali Du
Shengyu Zhu
Liangjun Ke
Zhitang Chen
Jianye Hao
Jun Wang
CML
62
64
0
14 May 2021
FedNLP: Benchmarking Federated Learning Methods for Natural Language Processing Tasks
Bill Yuchen Lin
Chaoyang He
ZiHang Zeng
Hulin Wang
Yufen Huang
Christophe Dupuy
Rahul Gupta
Mahdi Soltanolkotabi
Xiang Ren
Salman Avestimehr
FedML
62
116
0
18 Apr 2021
Unsuitability of NOTEARS for Causal Graph Discovery
Marcus Kaiser
Maksim Sipos
CML
89
65
0
12 Apr 2021
Exploiting Shared Representations for Personalized Federated Learning
Liam Collins
Hamed Hassani
Aryan Mokhtari
Sanjay Shakkottai
FedML
OOD
101
720
0
14 Feb 2021
On the Convergence of Continuous Constrained Optimization for Structure Learning
Ignavier Ng
Sébastien Lachapelle
Nan Rosemary Ke
Simon Lacoste-Julien
Kun Zhang
78
38
0
23 Nov 2020
DAGs with No Fears: A Closer Look at Continuous Optimization for Learning Bayesian Networks
Dennis L. Wei
Tian Gao
Yue Yu
CML
80
71
0
18 Oct 2020
Differentiable Causal Discovery Under Unmeasured Confounding
Rohit Bhattacharya
Tushar Nagarajan
Daniel Malinsky
I. Shpitser
CML
65
60
0
14 Oct 2020
Differentiable Causal Discovery from Interventional Data
P. Brouillard
Sébastien Lachapelle
Alexandre Lacoste
Simon Lacoste-Julien
Alexandre Drouin
CML
64
188
0
03 Jul 2020
On the Role of Sparsity and DAG Constraints for Learning Linear DAGs
Ignavier Ng
AmirEmad Ghassami
Kun Zhang
CML
55
190
0
17 Jun 2020
Robust Federated Learning: The Case of Affine Distribution Shifts
Amirhossein Reisizadeh
Farzan Farnia
Ramtin Pedarsani
Ali Jadbabaie
FedML
OOD
82
164
0
16 Jun 2020
On Low Rank Directed Acyclic Graphs and Causal Structure Learning
Zhuangyan Fang
Shengyu Zhu
Jiji Zhang
Yue Liu
Zhitang Chen
Yangbo He
CML
67
28
0
10 Jun 2020
Federated Learning with Matched Averaging
Hongyi Wang
Mikhail Yurochkin
Yuekai Sun
Dimitris Papailiopoulos
Y. Khazaeni
FedML
121
1,124
0
15 Feb 2020
Domain Adaptation as a Problem of Inference on Graphical Models
Kun Zhang
Biwei Huang
P. Stojanov
Erdun Gao
Qingsong Liu
Clark Glymour
OOD
102
65
0
09 Feb 2020
DYNOTEARS: Structure Learning from Time-Series Data
Roxana Pamfil
Nisara Sriwattanaworachai
Shaan Desai
Philip Pilgerstorfer
Paul Beaumont
K. Georgatzis
Bryon Aragam
CML
AI4TS
BDL
72
192
0
02 Feb 2020
A Graph Autoencoder Approach to Causal Structure Learning
Ignavier Ng
Shengyu Zhu
Zhitang Chen
Zhuangyan Fang
BDL
CML
54
83
0
18 Nov 2019
Federated Learning with Differential Privacy: Algorithms and Performance Analysis
Kang Wei
Jun Li
Ming Ding
Chuan Ma
Heng Yang
Farokhi Farhad
Shi Jin
Tony Q.S. Quek
H. Vincent Poor
FedML
125
1,616
0
01 Nov 2019
On the Convergence of Local Descent Methods in Federated Learning
Farzin Haddadpour
M. Mahdavi
FedML
79
273
0
31 Oct 2019
Masked Gradient-Based Causal Structure Learning
Ignavier Ng
Shengyu Zhu
Zhuangyan Fang
Haoyang Li
Zhitang Chen
Jun Wang
CML
112
117
0
18 Oct 2019
Learning Neural Causal Models from Unknown Interventions
Nan Rosemary Ke
O. Bilaniuk
Anirudh Goyal
Stefan Bauer
Hugo Larochelle
Bernhard Schölkopf
Michael C. Mozer
C. Pal
Yoshua Bengio
CML
OOD
107
169
0
02 Oct 2019
Learning Sparse Nonparametric DAGs
Xun Zheng
Chen Dan
Bryon Aragam
Pradeep Ravikumar
Eric Xing
CML
155
260
0
29 Sep 2019
Invariant Risk Minimization
Martín Arjovsky
Léon Bottou
Ishaan Gulrajani
David Lopez-Paz
OOD
186
2,229
0
05 Jul 2019
Causal Discovery with Reinforcement Learning
Shengyu Zhu
Ignavier Ng
Zhitang Chen
CML
58
240
0
11 Jun 2019
Gradient-Based Neural DAG Learning
Sébastien Lachapelle
P. Brouillard
T. Deleu
Simon Lacoste-Julien
BDL
CML
59
275
0
05 Jun 2019
DAG-GNN: DAG Structure Learning with Graph Neural Networks
Yue Yu
Jie Chen
Tian Gao
Mo Yu
BDL
CML
GNN
78
487
0
22 Apr 2019
Causal Discovery from Heterogeneous/Nonstationary Data with Independent Changes
Erdun Gao
Kun Zhang
Jiji Zhang
Joseph Ramsey
Ruben Sanchez-Romero
Clark Glymour
Bernhard Schölkopf
62
229
0
05 Mar 2019
Federated Machine Learning: Concept and Applications
Qiang Yang
Yang Liu
Tianjian Chen
Yongxin Tong
FedML
75
2,318
0
13 Feb 2019
Federated Optimization in Heterogeneous Networks
Tian Li
Anit Kumar Sahu
Manzil Zaheer
Maziar Sanjabi
Ameet Talwalkar
Virginia Smith
FedML
180
5,184
0
14 Dec 2018
DAGs with NO TEARS: Continuous Optimization for Structure Learning
Xun Zheng
Bryon Aragam
Pradeep Ravikumar
Eric Xing
NoLa
CML
OffRL
99
942
0
04 Mar 2018
Detecting and Correcting for Label Shift with Black Box Predictors
Zachary Chase Lipton
Yu Wang
Alex Smola
OOD
66
554
0
12 Feb 2018
Categorical Reparameterization with Gumbel-Softmax
Eric Jang
S. Gu
Ben Poole
BDL
336
5,364
0
03 Nov 2016
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
406
17,486
0
17 Feb 2016
Causal inference using invariant prediction: identification and confidence intervals
J. Peters
Peter Buhlmann
N. Meinshausen
OOD
122
971
0
06 Jan 2015
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.9K
150,115
0
22 Dec 2014
Constraint-based Causal Discovery from Multiple Interventions over Overlapping Variable Sets
Sofia Triantafillou
Ioannis Tsamardinos
CML
131
150
0
10 Mar 2014
CAM: Causal additive models, high-dimensional order search and penalized regression
Peter Buhlmann
J. Peters
J. Ernest
CML
119
325
0
06 Oct 2013
Causal Discovery from Changes
Jin Tian
Judea Pearl
CML
116
165
0
10 Jan 2013
Identifiability of Gaussian structural equation models with equal error variances
J. Peters
Peter Buhlmann
CML
175
338
0
11 May 2012
On the Identifiability of the Post-Nonlinear Causal Model
Kun Zhang
Aapo Hyvarinen
CML
199
565
0
09 May 2012
Identifiability of Causal Graphs using Functional Models
J. Peters
Joris Mooij
Dominik Janzing
Bernhard Schölkopf
92
155
0
14 Feb 2012
1