ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.03548
  4. Cited By
Private Robust Estimation by Stabilizing Convex Relaxations

Private Robust Estimation by Stabilizing Convex Relaxations

7 December 2021
Pravesh Kothari
Pasin Manurangsi
A. Velingker
ArXivPDFHTML

Papers citing "Private Robust Estimation by Stabilizing Convex Relaxations"

38 / 38 papers shown
Title
Optimal Differentially Private Sampling of Unbounded Gaussians
Valentio Iverson
Gautam Kamath
Argyris Mouzakis
46
0
0
03 Mar 2025
SoS Certifiability of Subgaussian Distributions and its Algorithmic
  Applications
SoS Certifiability of Subgaussian Distributions and its Algorithmic Applications
Ilias Diakonikolas
Samuel B. Hopkins
Ankit Pensia
Stefan Tiegel
43
3
0
28 Oct 2024
Private Means and the Curious Incident of the Free Lunch
Private Means and the Curious Incident of the Free Lunch
Jack Fitzsimons
James Honaker
Michael Shoemate
Vikrant Singhal
46
2
0
19 Aug 2024
Distribution Learnability and Robustness
Distribution Learnability and Robustness
Shai Ben-David
Alex Bie
Gautam Kamath
Tosca Lechner
34
2
0
25 Jun 2024
Perturb-and-Project: Differentially Private Similarities and Marginals
Perturb-and-Project: Differentially Private Similarities and Marginals
Vincent Cohen-Addad
Tommaso dÓrsi
Alessandro Epasto
Vahab Mirrokni
Peilin Zhong
33
0
0
07 Jun 2024
Private Edge Density Estimation for Random Graphs: Optimal, Efficient
  and Robust
Private Edge Density Estimation for Random Graphs: Optimal, Efficient and Robust
Hongjie Chen
Jingqiu Ding
Yiding Hua
David Steurer
33
1
0
26 May 2024
On Differentially Private Subspace Estimation in a Distribution-Free
  Setting
On Differentially Private Subspace Estimation in a Distribution-Free Setting
Eliad Tsfadia
23
1
0
09 Feb 2024
Sample-Optimal Locally Private Hypothesis Selection and the Provable
  Benefits of Interactivity
Sample-Optimal Locally Private Hypothesis Selection and the Provable Benefits of Interactivity
A. F. Pour
Hassan Ashtiani
S. Asoodeh
41
0
0
09 Dec 2023
Instance-Specific Asymmetric Sensitivity in Differential Privacy
Instance-Specific Asymmetric Sensitivity in Differential Privacy
David Durfee
32
1
0
02 Nov 2023
Statistical Barriers to Affine-equivariant Estimation
Statistical Barriers to Affine-equivariant Estimation
Zihao Chen
Yeshwanth Cherapanamjeri
56
0
0
16 Oct 2023
Better and Simpler Lower Bounds for Differentially Private Statistical
  Estimation
Better and Simpler Lower Bounds for Differentially Private Statistical Estimation
Shyam Narayanan
FedML
19
10
0
10 Oct 2023
Mixtures of Gaussians are Privately Learnable with a Polynomial Number
  of Samples
Mixtures of Gaussians are Privately Learnable with a Polynomial Number of Samples
Mohammad Afzali
H. Ashtiani
Christopher Liaw
32
5
0
07 Sep 2023
Private Distribution Learning with Public Data: The View from Sample
  Compression
Private Distribution Learning with Public Data: The View from Sample Compression
Shai Ben-David
Alex Bie
C. Canonne
Gautam Kamath
Vikrant Singhal
42
11
0
11 Aug 2023
PLAN: Variance-Aware Private Mean Estimation
PLAN: Variance-Aware Private Mean Estimation
Martin Aumüller
C. Lebeda
Boel Nelson
Rasmus Pagh
FedML
26
4
0
14 Jun 2023
Robust and differentially private stochastic linear bandits
Robust and differentially private stochastic linear bandits
Vasileios Charisopoulos
Hossein Esfandiari
Vahab Mirrokni
FedML
23
1
0
23 Apr 2023
A Polynomial Time, Pure Differentially Private Estimator for Binary
  Product Distributions
A Polynomial Time, Pure Differentially Private Estimator for Binary Product Distributions
Vikrant Singhal
34
9
0
13 Apr 2023
Polynomial Time and Private Learning of Unbounded Gaussian Mixture
  Models
Polynomial Time and Private Learning of Unbounded Gaussian Mixture Models
Jamil Arbas
H. Ashtiani
Christopher Liaw
40
23
0
07 Mar 2023
From Robustness to Privacy and Back
From Robustness to Privacy and Back
Hilal Asi
Jonathan R. Ullman
Lydia Zakynthinou
44
27
0
03 Feb 2023
Near Optimal Private and Robust Linear Regression
Near Optimal Private and Robust Linear Regression
Xiyang Liu
Prateek Jain
Weihao Kong
Sewoong Oh
A. Suggala
41
9
0
30 Jan 2023
Fast, Sample-Efficient, Affine-Invariant Private Mean and Covariance
  Estimation for Subgaussian Distributions
Fast, Sample-Efficient, Affine-Invariant Private Mean and Covariance Estimation for Subgaussian Distributions
Gavin Brown
Samuel B. Hopkins
Adam D. Smith
FedML
27
17
0
28 Jan 2023
A Fast Algorithm for Adaptive Private Mean Estimation
A Fast Algorithm for Adaptive Private Mean Estimation
John C. Duchi
Saminul Haque
Rohith Kuditipudi
FedML
24
15
0
17 Jan 2023
Private estimation algorithms for stochastic block models and mixture
  models
Private estimation algorithms for stochastic block models and mixture models
Hongjie Chen
Vincent Cohen-Addad
Tommaso dÓrsi
Alessandro Epasto
Jacob Imola
David Steurer
Stefan Tiegel
FedML
43
20
0
11 Jan 2023
Privately Estimating a Gaussian: Efficient, Robust and Optimal
Privately Estimating a Gaussian: Efficient, Robust and Optimal
Daniel Alabi
Pravesh Kothari
Pranay Tankala
Prayaag Venkat
Fred Zhang
66
0
0
15 Dec 2022
Robustness Implies Privacy in Statistical Estimation
Robustness Implies Privacy in Statistical Estimation
Samuel B. Hopkins
Gautam Kamath
Mahbod Majid
Shyam Narayanan
18
49
0
09 Dec 2022
Privacy Induces Robustness: Information-Computation Gaps and Sparse Mean
  Estimation
Privacy Induces Robustness: Information-Computation Gaps and Sparse Mean Estimation
Kristian Georgiev
Samuel B. Hopkins
FedML
33
21
0
01 Nov 2022
Private Estimation with Public Data
Private Estimation with Public Data
Alex Bie
Gautam Kamath
Vikrant Singhal
36
28
0
16 Aug 2022
Differentially Private Covariance Revisited
Differentially Private Covariance Revisited
Wei Dong
Yuting Liang
K. Yi
FedML
21
13
0
28 May 2022
DP-PCA: Statistically Optimal and Differentially Private PCA
DP-PCA: Statistically Optimal and Differentially Private PCA
Xiyang Liu
Weihao Kong
Prateek Jain
Sewoong Oh
38
21
0
27 May 2022
Differentially Private Regression with Unbounded Covariates
Differentially Private Regression with Unbounded Covariates
Jason Milionis
Alkis Kalavasis
Dimitris Fotakis
Stratis Ioannidis
23
10
0
19 Feb 2022
On robustness and local differential privacy
On robustness and local differential privacy
Mengchu Li
Thomas B. Berrett
Yi Yu
24
24
0
03 Jan 2022
Private and polynomial time algorithms for learning Gaussians and beyond
Private and polynomial time algorithms for learning Gaussians and beyond
H. Ashtiani
Christopher Liaw
57
44
0
22 Nov 2021
A Private and Computationally-Efficient Estimator for Unbounded
  Gaussians
A Private and Computationally-Efficient Estimator for Unbounded Gaussians
Gautam Kamath
Argyris Mouzakis
Vikrant Singhal
Thomas Steinke
Jonathan R. Ullman
55
39
0
08 Nov 2021
Universal Private Estimators
Universal Private Estimators
Wei Dong
K. Yi
24
19
0
04 Nov 2021
FriendlyCore: Practical Differentially Private Aggregation
FriendlyCore: Practical Differentially Private Aggregation
Eliad Tsfadia
E. Cohen
Haim Kaplan
Yishay Mansour
Uri Stemmer
20
33
0
19 Oct 2021
Robust and Differentially Private Mean Estimation
Robust and Differentially Private Mean Estimation
Xiyang Liu
Weihao Kong
Sham Kakade
Sewoong Oh
OOD
FedML
53
75
0
18 Feb 2021
On the Sample Complexity of Privately Learning Unbounded
  High-Dimensional Gaussians
On the Sample Complexity of Privately Learning Unbounded High-Dimensional Gaussians
Ishaq Aden-Ali
H. Ashtiani
Gautam Kamath
40
41
0
19 Oct 2020
Privately Learning High-Dimensional Distributions
Privately Learning High-Dimensional Distributions
Gautam Kamath
Jerry Li
Vikrant Singhal
Jonathan R. Ullman
FedML
69
148
0
01 May 2018
Prochlo: Strong Privacy for Analytics in the Crowd
Prochlo: Strong Privacy for Analytics in the Crowd
Andrea Bittau
Ulfar Erlingsson
Petros Maniatis
Ilya Mironov
A. Raghunathan
David Lie
Mitch Rudominer
Ushasree Kode
J. Tinnés
B. Seefeld
91
278
0
02 Oct 2017
1