41
10

Differentially Private Regression with Unbounded Covariates

Abstract

We provide computationally efficient, differentially private algorithms for the classical regression settings of Least Squares Fitting, Binary Regression and Linear Regression with unbounded covariates. Prior to our work, privacy constraints in such regression settings were studied under strong a priori bounds on covariates. We consider the case of Gaussian marginals and extend recent differentially private techniques on mean and covariance estimation (Kamath et al., 2019; Karwa and Vadhan, 2018) to the sub-gaussian regime. We provide a novel technical analysis yielding differentially private algorithms for the above classical regression settings. Through the case of Binary Regression, we capture the fundamental and widely-studied models of logistic regression and linearly-separable SVMs, learning an unbiased estimate of the true regression vector, up to a scaling factor.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.