ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.02424
  4. Cited By
Variational Wasserstein gradient flow

Variational Wasserstein gradient flow

4 December 2021
JiaoJiao Fan
Qinsheng Zhang
Amirhossein Taghvaei
Yongxin Chen
ArXivPDFHTML

Papers citing "Variational Wasserstein gradient flow"

39 / 39 papers shown
Title
Nested Annealed Training Scheme for Generative Adversarial Networks
Nested Annealed Training Scheme for Generative Adversarial Networks
Chang Wan
Ming-Hsuan Yang
Minglu Li
Yunliang Jiang
Zhonglong Zheng
GAN
79
0
0
20 Jan 2025
Computational and Statistical Asymptotic Analysis of the JKO Scheme for Iterative Algorithms to update distributions
Computational and Statistical Asymptotic Analysis of the JKO Scheme for Iterative Algorithms to update distributions
Shang Wu
Yazhen Wang
74
0
0
11 Jan 2025
Importance Corrected Neural JKO Sampling
Importance Corrected Neural JKO Sampling
Johannes Hertrich
Robert Gruhlke
68
2
0
29 Jul 2024
Neural Optimal Transport
Neural Optimal Transport
Alexander Korotin
Daniil Selikhanovych
Evgeny Burnaev
OT
165
94
0
28 Jan 2022
Generative Modeling with Optimal Transport Maps
Generative Modeling with Optimal Transport Maps
Litu Rout
Alexander Korotin
Evgeny Burnaev
OT
DiffM
166
66
0
06 Oct 2021
Proximal Optimal Transport Modeling of Population Dynamics
Proximal Optimal Transport Modeling of Population Dynamics
Charlotte Bunne
Laetitia Meng-Papaxanthos
Andreas Krause
Marco Cuturi
OT
65
85
0
11 Jun 2021
Optimizing Functionals on the Space of Probabilities with Input Convex
  Neural Networks
Optimizing Functionals on the Space of Probabilities with Input Convex Neural Networks
David Alvarez-Melis
Yair Schiff
Youssef Mroueh
53
54
0
01 Jun 2021
Large-Scale Wasserstein Gradient Flows
Large-Scale Wasserstein Gradient Flows
Petr Mokrov
Alexander Korotin
Lingxiao Li
Aude Genevay
Justin Solomon
Evgeny Burnaev
50
72
0
01 Jun 2021
Wasserstein Proximal of GANs
Wasserstein Proximal of GANs
A. Lin
Wuchen Li
Stanley Osher
Guido Montúfar
GAN
27
47
0
13 Feb 2021
Continuous Wasserstein-2 Barycenter Estimation without Minimax
  Optimization
Continuous Wasserstein-2 Barycenter Estimation without Minimax Optimization
Alexander Korotin
Lingxiao Li
Justin Solomon
Evgeny Burnaev
96
51
0
02 Feb 2021
Variational Transport: A Convergent Particle-BasedAlgorithm for
  Distributional Optimization
Variational Transport: A Convergent Particle-BasedAlgorithm for Distributional Optimization
Zhuoran Yang
Yufeng Zhang
Yongxin Chen
Zhaoran Wang
OT
53
5
0
21 Dec 2020
Convex Potential Flows: Universal Probability Distributions with Optimal
  Transport and Convex Optimization
Convex Potential Flows: Universal Probability Distributions with Optimal Transport and Convex Optimization
Chin-Wei Huang
Ricky T. Q. Chen
Christos Tsirigotis
Aaron Courville
OT
141
97
0
10 Dec 2020
f-Divergence Variational Inference
f-Divergence Variational Inference
Neng Wan
Dapeng Li
N. Hovakimyan
54
32
0
28 Sep 2020
A Framework For Contrastive Self-Supervised Learning And Designing A New
  Approach
A Framework For Contrastive Self-Supervised Learning And Designing A New Approach
William Falcon
Kyunghyun Cho
SSL
49
104
0
31 Aug 2020
Scalable Computations of Wasserstein Barycenter via Input Convex Neural
  Networks
Scalable Computations of Wasserstein Barycenter via Input Convex Neural Networks
JiaoJiao Fan
Amirhossein Taghvaei
Yongxin Chen
50
58
0
08 Jul 2020
AE-OT-GAN: Training GANs from data specific latent distribution
AE-OT-GAN: Training GANs from data specific latent distribution
Dongsheng An
Yang Guo
Min Zhang
Xin Qi
Na Lei
S. Yau
X. Gu
DRL
GAN
34
24
0
11 Jan 2020
Wasserstein-2 Generative Networks
Wasserstein-2 Generative Networks
Alexander Korotin
Vage Egiazarian
Arip Asadulaev
Alexander Safin
Evgeny Burnaev
GAN
165
104
0
28 Sep 2019
Optimal transport mapping via input convex neural networks
Optimal transport mapping via input convex neural networks
Ashok Vardhan Makkuva
Amirhossein Taghvaei
Sewoong Oh
Jason D. Lee
OT
19
199
0
28 Aug 2019
Universal Approximation with Deep Narrow Networks
Universal Approximation with Deep Narrow Networks
Patrick Kidger
Terry Lyons
61
329
0
21 May 2019
Deep Generative Learning via Variational Gradient Flow
Deep Generative Learning via Variational Gradient Flow
Yuan Gao
Yuling Jiao
Yang Wang
Yao Wang
Can Yang
Shunkang Zhang
82
36
0
24 Jan 2019
Glow: Generative Flow with Invertible 1x1 Convolutions
Glow: Generative Flow with Invertible 1x1 Convolutions
Diederik P. Kingma
Prafulla Dhariwal
BDL
DRL
201
3,110
0
09 Jul 2018
Approximate inference with Wasserstein gradient flows
Approximate inference with Wasserstein gradient flows
Charlie Frogner
T. Poggio
DiffM
8
32
0
12 Jun 2018
On gradient regularizers for MMD GANs
On gradient regularizers for MMD GANs
Michael Arbel
Danica J. Sutherland
Mikolaj Binkowski
Arthur Gretton
55
94
0
29 May 2018
Langevin Monte Carlo and JKO splitting
Langevin Monte Carlo and JKO splitting
Espen Bernton
46
79
0
23 Feb 2018
Sampling as optimization in the space of measures: The Langevin dynamics
  as a composite optimization problem
Sampling as optimization in the space of measures: The Langevin dynamics as a composite optimization problem
Andre Wibisono
77
178
0
22 Feb 2018
Spectral Normalization for Generative Adversarial Networks
Spectral Normalization for Generative Adversarial Networks
Takeru Miyato
Toshiki Kataoka
Masanori Koyama
Yuichi Yoshida
ODL
130
4,421
0
16 Feb 2018
Large-Scale Optimal Transport and Mapping Estimation
Large-Scale Optimal Transport and Mapping Estimation
Vivien Seguy
B. Damodaran
Rémi Flamary
Nicolas Courty
Antoine Rolet
Mathieu Blondel
OT
61
245
0
07 Nov 2017
Convergence of Langevin MCMC in KL-divergence
Convergence of Langevin MCMC in KL-divergence
Xiang Cheng
Peter L. Bartlett
32
189
0
25 May 2017
Generalization and Equilibrium in Generative Adversarial Nets (GANs)
Generalization and Equilibrium in Generative Adversarial Nets (GANs)
Sanjeev Arora
Rong Ge
Yingyu Liang
Tengyu Ma
Yi Zhang
GAN
35
687
0
02 Mar 2017
PixelCNN++: Improving the PixelCNN with Discretized Logistic Mixture
  Likelihood and Other Modifications
PixelCNN++: Improving the PixelCNN with Discretized Logistic Mixture Likelihood and Other Modifications
Tim Salimans
A. Karpathy
Xi Chen
Diederik P. Kingma
54
933
0
19 Jan 2017
Input Convex Neural Networks
Input Convex Neural Networks
Brandon Amos
Lei Xu
J. Zico Kolter
255
611
0
22 Sep 2016
Stein Variational Gradient Descent: A General Purpose Bayesian Inference
  Algorithm
Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm
Qiang Liu
Dilin Wang
BDL
61
1,082
0
16 Aug 2016
f-GAN: Training Generative Neural Samplers using Variational Divergence
  Minimization
f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization
Sebastian Nowozin
Botond Cseke
Ryota Tomioka
GAN
86
1,648
0
02 Jun 2016
Wide Residual Networks
Wide Residual Networks
Sergey Zagoruyko
N. Komodakis
249
7,951
0
23 May 2016
A Kernelized Stein Discrepancy for Goodness-of-fit Tests and Model
  Evaluation
A Kernelized Stein Discrepancy for Goodness-of-fit Tests and Model Evaluation
Qiang Liu
Jason D. Lee
Michael I. Jordan
94
478
0
10 Feb 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
1.3K
192,638
0
10 Dec 2015
U-Net: Convolutional Networks for Biomedical Image Segmentation
U-Net: Convolutional Networks for Biomedical Image Segmentation
Olaf Ronneberger
Philipp Fischer
Thomas Brox
SSeg
3DV
1.1K
76,547
0
18 May 2015
Nonparametric variational inference
Nonparametric variational inference
S. Gershman
Matt Hoffman
David M. Blei
BDL
79
153
0
18 Jun 2012
Estimating divergence functionals and the likelihood ratio by convex
  risk minimization
Estimating divergence functionals and the likelihood ratio by convex risk minimization
X. Nguyen
Martin J. Wainwright
Michael I. Jordan
149
799
0
04 Sep 2008
1