Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2112.02424
Cited By
Variational Wasserstein gradient flow
4 December 2021
JiaoJiao Fan
Qinsheng Zhang
Amirhossein Taghvaei
Yongxin Chen
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Variational Wasserstein gradient flow"
39 / 39 papers shown
Title
Nested Annealed Training Scheme for Generative Adversarial Networks
Chang Wan
Ming-Hsuan Yang
Minglu Li
Yunliang Jiang
Zhonglong Zheng
GAN
79
0
0
20 Jan 2025
Computational and Statistical Asymptotic Analysis of the JKO Scheme for Iterative Algorithms to update distributions
Shang Wu
Yazhen Wang
74
0
0
11 Jan 2025
Importance Corrected Neural JKO Sampling
Johannes Hertrich
Robert Gruhlke
68
2
0
29 Jul 2024
Neural Optimal Transport
Alexander Korotin
Daniil Selikhanovych
Evgeny Burnaev
OT
165
94
0
28 Jan 2022
Generative Modeling with Optimal Transport Maps
Litu Rout
Alexander Korotin
Evgeny Burnaev
OT
DiffM
166
66
0
06 Oct 2021
Proximal Optimal Transport Modeling of Population Dynamics
Charlotte Bunne
Laetitia Meng-Papaxanthos
Andreas Krause
Marco Cuturi
OT
65
85
0
11 Jun 2021
Optimizing Functionals on the Space of Probabilities with Input Convex Neural Networks
David Alvarez-Melis
Yair Schiff
Youssef Mroueh
53
54
0
01 Jun 2021
Large-Scale Wasserstein Gradient Flows
Petr Mokrov
Alexander Korotin
Lingxiao Li
Aude Genevay
Justin Solomon
Evgeny Burnaev
50
72
0
01 Jun 2021
Wasserstein Proximal of GANs
A. Lin
Wuchen Li
Stanley Osher
Guido Montúfar
GAN
27
47
0
13 Feb 2021
Continuous Wasserstein-2 Barycenter Estimation without Minimax Optimization
Alexander Korotin
Lingxiao Li
Justin Solomon
Evgeny Burnaev
96
51
0
02 Feb 2021
Variational Transport: A Convergent Particle-BasedAlgorithm for Distributional Optimization
Zhuoran Yang
Yufeng Zhang
Yongxin Chen
Zhaoran Wang
OT
53
5
0
21 Dec 2020
Convex Potential Flows: Universal Probability Distributions with Optimal Transport and Convex Optimization
Chin-Wei Huang
Ricky T. Q. Chen
Christos Tsirigotis
Aaron Courville
OT
141
97
0
10 Dec 2020
f-Divergence Variational Inference
Neng Wan
Dapeng Li
N. Hovakimyan
54
32
0
28 Sep 2020
A Framework For Contrastive Self-Supervised Learning And Designing A New Approach
William Falcon
Kyunghyun Cho
SSL
49
104
0
31 Aug 2020
Scalable Computations of Wasserstein Barycenter via Input Convex Neural Networks
JiaoJiao Fan
Amirhossein Taghvaei
Yongxin Chen
50
58
0
08 Jul 2020
AE-OT-GAN: Training GANs from data specific latent distribution
Dongsheng An
Yang Guo
Min Zhang
Xin Qi
Na Lei
S. Yau
X. Gu
DRL
GAN
34
24
0
11 Jan 2020
Wasserstein-2 Generative Networks
Alexander Korotin
Vage Egiazarian
Arip Asadulaev
Alexander Safin
Evgeny Burnaev
GAN
165
104
0
28 Sep 2019
Optimal transport mapping via input convex neural networks
Ashok Vardhan Makkuva
Amirhossein Taghvaei
Sewoong Oh
Jason D. Lee
OT
19
199
0
28 Aug 2019
Universal Approximation with Deep Narrow Networks
Patrick Kidger
Terry Lyons
61
329
0
21 May 2019
Deep Generative Learning via Variational Gradient Flow
Yuan Gao
Yuling Jiao
Yang Wang
Yao Wang
Can Yang
Shunkang Zhang
82
36
0
24 Jan 2019
Glow: Generative Flow with Invertible 1x1 Convolutions
Diederik P. Kingma
Prafulla Dhariwal
BDL
DRL
201
3,110
0
09 Jul 2018
Approximate inference with Wasserstein gradient flows
Charlie Frogner
T. Poggio
DiffM
8
32
0
12 Jun 2018
On gradient regularizers for MMD GANs
Michael Arbel
Danica J. Sutherland
Mikolaj Binkowski
Arthur Gretton
55
94
0
29 May 2018
Langevin Monte Carlo and JKO splitting
Espen Bernton
46
79
0
23 Feb 2018
Sampling as optimization in the space of measures: The Langevin dynamics as a composite optimization problem
Andre Wibisono
77
178
0
22 Feb 2018
Spectral Normalization for Generative Adversarial Networks
Takeru Miyato
Toshiki Kataoka
Masanori Koyama
Yuichi Yoshida
ODL
130
4,421
0
16 Feb 2018
Large-Scale Optimal Transport and Mapping Estimation
Vivien Seguy
B. Damodaran
Rémi Flamary
Nicolas Courty
Antoine Rolet
Mathieu Blondel
OT
61
245
0
07 Nov 2017
Convergence of Langevin MCMC in KL-divergence
Xiang Cheng
Peter L. Bartlett
32
189
0
25 May 2017
Generalization and Equilibrium in Generative Adversarial Nets (GANs)
Sanjeev Arora
Rong Ge
Yingyu Liang
Tengyu Ma
Yi Zhang
GAN
35
687
0
02 Mar 2017
PixelCNN++: Improving the PixelCNN with Discretized Logistic Mixture Likelihood and Other Modifications
Tim Salimans
A. Karpathy
Xi Chen
Diederik P. Kingma
54
933
0
19 Jan 2017
Input Convex Neural Networks
Brandon Amos
Lei Xu
J. Zico Kolter
255
611
0
22 Sep 2016
Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm
Qiang Liu
Dilin Wang
BDL
61
1,082
0
16 Aug 2016
f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization
Sebastian Nowozin
Botond Cseke
Ryota Tomioka
GAN
86
1,648
0
02 Jun 2016
Wide Residual Networks
Sergey Zagoruyko
N. Komodakis
249
7,951
0
23 May 2016
A Kernelized Stein Discrepancy for Goodness-of-fit Tests and Model Evaluation
Qiang Liu
Jason D. Lee
Michael I. Jordan
94
478
0
10 Feb 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
1.3K
192,638
0
10 Dec 2015
U-Net: Convolutional Networks for Biomedical Image Segmentation
Olaf Ronneberger
Philipp Fischer
Thomas Brox
SSeg
3DV
1.1K
76,547
0
18 May 2015
Nonparametric variational inference
S. Gershman
Matt Hoffman
David M. Blei
BDL
79
153
0
18 Jun 2012
Estimating divergence functionals and the likelihood ratio by convex risk minimization
X. Nguyen
Martin J. Wainwright
Michael I. Jordan
149
799
0
04 Sep 2008
1