ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.01801
  4. Cited By
Mesh Convolution with Continuous Filters for 3D Surface Parsing

Mesh Convolution with Continuous Filters for 3D Surface Parsing

3 December 2021
Huan Lei
Naveed Akhtar
M. Shah
Ajmal Saeed Mian
    3DPC
ArXivPDFHTML

Papers citing "Mesh Convolution with Continuous Filters for 3D Surface Parsing"

8 / 8 papers shown
Title
Full Point Encoding for Local Feature Aggregation in 3D Point Clouds
Full Point Encoding for Local Feature Aggregation in 3D Point Clouds
Yong-xing He
Hongshan Yu
Zhengeng Yang
Xiaoguang Liu
Wei Sun
Ajmal Saeed Mian
ViT
3DPC
14
3
0
08 Mar 2023
Mix3D: Out-of-Context Data Augmentation for 3D Scenes
Mix3D: Out-of-Context Data Augmentation for 3D Scenes
Alexey Nekrasov
Jonas Schult
Or Litany
Bastian Leibe
Francis Engelmann
3DPC
164
154
0
05 Oct 2021
Primal-Dual Mesh Convolutional Neural Networks
Primal-Dual Mesh Convolutional Neural Networks
Francesco Milano
Antonio Loquercio
Antoni Rosinol
Davide Scaramuzza
Luca Carlone
3DPC
AI4CE
53
89
0
23 Oct 2020
PointContrast: Unsupervised Pre-training for 3D Point Cloud
  Understanding
PointContrast: Unsupervised Pre-training for 3D Point Cloud Understanding
Saining Xie
Jiatao Gu
Demi Guo
C. Qi
Leonidas J. Guibas
Or Litany
3DPC
141
622
0
21 Jul 2020
PointNet: Deep Learning on Point Sets for 3D Classification and
  Segmentation
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
C. Qi
Hao Su
Kaichun Mo
Leonidas J. Guibas
3DH
3DPC
3DV
PINN
222
14,103
0
02 Dec 2016
Geometric deep learning on graphs and manifolds using mixture model CNNs
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
251
1,811
0
25 Nov 2016
Geometric deep learning: going beyond Euclidean data
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
253
3,239
0
24 Nov 2016
Vote3Deep: Fast Object Detection in 3D Point Clouds Using Efficient
  Convolutional Neural Networks
Vote3Deep: Fast Object Detection in 3D Point Clouds Using Efficient Convolutional Neural Networks
Martin Engelcke
Dushyant Rao
Dominic Zeng Wang
Chi Hay Tong
Ingmar Posner
3DPC
192
522
0
21 Sep 2016
1