ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.00890
  4. Cited By
Counterfactual Explanations via Latent Space Projection and
  Interpolation

Counterfactual Explanations via Latent Space Projection and Interpolation

2 December 2021
Brian Barr
Matthew R. Harrington
Samuel Sharpe
Capital One
    BDL
ArXivPDFHTML

Papers citing "Counterfactual Explanations via Latent Space Projection and Interpolation"

26 / 26 papers shown
Title
Generative Adversarial Networks
Generative Adversarial Networks
Gilad Cohen
Raja Giryes
GAN
194
30,069
0
01 Mar 2022
Latent-CF: A Simple Baseline for Reverse Counterfactual Explanations
Latent-CF: A Simple Baseline for Reverse Counterfactual Explanations
R. Balasubramanian
Samuel Sharpe
Brian Barr
J. Wittenbach
C. Bayan Bruss
BDL
19
18
0
16 Dec 2020
ViCE: Visual Counterfactual Explanations for Machine Learning Models
ViCE: Visual Counterfactual Explanations for Machine Learning Models
Oscar Gomez
Steffen Holter
Jun Yuan
E. Bertini
AAML
75
96
0
05 Mar 2020
Decision-Making with Auto-Encoding Variational Bayes
Decision-Making with Auto-Encoding Variational Bayes
Romain Lopez
Pierre Boyeau
Nir Yosef
Michael I. Jordan
Jeffrey Regier
BDL
251
10,591
0
17 Feb 2020
Explaining Data-Driven Decisions made by AI Systems: The Counterfactual
  Approach
Explaining Data-Driven Decisions made by AI Systems: The Counterfactual Approach
Carlos Fernandez
F. Provost
Xintian Han
CML
36
70
0
21 Jan 2020
Preserving Causal Constraints in Counterfactual Explanations for Machine
  Learning Classifiers
Preserving Causal Constraints in Counterfactual Explanations for Machine Learning Classifiers
Divyat Mahajan
Chenhao Tan
Amit Sharma
OOD
CML
89
206
0
06 Dec 2019
Learning Model-Agnostic Counterfactual Explanations for Tabular Data
Learning Model-Agnostic Counterfactual Explanations for Tabular Data
Martin Pawelczyk
Johannes Haug
Klaus Broelemann
Gjergji Kasneci
OOD
CML
58
203
0
21 Oct 2019
Towards Realistic Individual Recourse and Actionable Explanations in
  Black-Box Decision Making Systems
Towards Realistic Individual Recourse and Actionable Explanations in Black-Box Decision Making Systems
Shalmali Joshi
Oluwasanmi Koyejo
Warut D. Vijitbenjaronk
Been Kim
Joydeep Ghosh
FaML
56
186
0
22 Jul 2019
Interpretable Counterfactual Explanations Guided by Prototypes
Interpretable Counterfactual Explanations Guided by Prototypes
A. V. Looveren
Janis Klaise
FAtt
47
380
0
03 Jul 2019
Global Explanations of Neural Networks: Mapping the Landscape of
  Predictions
Global Explanations of Neural Networks: Mapping the Landscape of Predictions
Mark Ibrahim
Melissa Louie
C. Modarres
John Paisley
FAtt
48
115
0
06 Feb 2019
Efficient Search for Diverse Coherent Explanations
Efficient Search for Diverse Coherent Explanations
Chris Russell
56
236
0
02 Jan 2019
Actionable Recourse in Linear Classification
Actionable Recourse in Linear Classification
Berk Ustun
Alexander Spangher
Yang Liu
FaML
90
545
0
18 Sep 2018
Avoiding Latent Variable Collapse With Generative Skip Models
Avoiding Latent Variable Collapse With Generative Skip Models
Adji Bousso Dieng
Yoon Kim
Alexander M. Rush
David M. Blei
DRL
43
174
0
12 Jul 2018
Explanations based on the Missing: Towards Contrastive Explanations with
  Pertinent Negatives
Explanations based on the Missing: Towards Contrastive Explanations with Pertinent Negatives
Amit Dhurandhar
Pin-Yu Chen
Ronny Luss
Chun-Chen Tu
Pai-Shun Ting
Karthikeyan Shanmugam
Payel Das
FAtt
91
587
0
21 Feb 2018
Inference Suboptimality in Variational Autoencoders
Inference Suboptimality in Variational Autoencoders
Chris Cremer
Xuechen Li
David Duvenaud
DRL
BDL
86
281
0
10 Jan 2018
Counterfactual Explanations without Opening the Black Box: Automated
  Decisions and the GDPR
Counterfactual Explanations without Opening the Black Box: Automated Decisions and the GDPR
Sandra Wachter
Brent Mittelstadt
Chris Russell
MLAU
86
2,332
0
01 Nov 2017
A Unified Approach to Interpreting Model Predictions
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
688
21,613
0
22 May 2017
Learning Important Features Through Propagating Activation Differences
Learning Important Features Through Propagating Activation Differences
Avanti Shrikumar
Peyton Greenside
A. Kundaje
FAtt
138
3,848
0
10 Apr 2017
Axiomatic Attribution for Deep Networks
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OOD
FAtt
147
5,920
0
04 Mar 2017
Tutorial on Variational Autoencoders
Tutorial on Variational Autoencoders
Carl Doersch
BDL
DRL
85
1,736
0
19 Jun 2016
Control of Memory, Active Perception, and Action in Minecraft
Control of Memory, Active Perception, and Action in Minecraft
Michael T. Lash
Valliappa Chockalingam
Ashwin Balakrishnan
Honglak Lee
42
27
0
30 May 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
746
16,828
0
16 Feb 2016
Variational Inference: A Review for Statisticians
Variational Inference: A Review for Statisticians
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
BDL
198
4,748
0
04 Jan 2016
Variational Inference with Normalizing Flows
Variational Inference with Normalizing Flows
Danilo Jimenez Rezende
S. Mohamed
DRL
BDL
267
4,143
0
21 May 2015
Explaining and Harnessing Adversarial Examples
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
201
18,922
0
20 Dec 2014
Intriguing properties of neural networks
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
204
14,831
1
21 Dec 2013
1