ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.15141
  4. Cited By
Path Integral Sampler: a stochastic control approach for sampling
v1v2 (latest)

Path Integral Sampler: a stochastic control approach for sampling

30 November 2021
Qinsheng Zhang
Yongxin Chen
    DiffM
ArXiv (abs)PDFHTML

Papers citing "Path Integral Sampler: a stochastic control approach for sampling"

34 / 84 papers shown
Title
Soft-constrained Schrodinger Bridge: a Stochastic Control Approach
Soft-constrained Schrodinger Bridge: a Stochastic Control Approach
Jhanvi Garg
Xianyang Zhang
Quan Zhou
DiffMOT
67
2
0
04 Mar 2024
Zeroth-Order Sampling Methods for Non-Log-Concave Distributions:
  Alleviating Metastability by Denoising Diffusion
Zeroth-Order Sampling Methods for Non-Log-Concave Distributions: Alleviating Metastability by Denoising Diffusion
Ye He
Kevin Rojas
Molei Tao
DiffM
116
11
0
27 Feb 2024
Fine-Tuning of Continuous-Time Diffusion Models as Entropy-Regularized
  Control
Fine-Tuning of Continuous-Time Diffusion Models as Entropy-Regularized Control
Masatoshi Uehara
Yulai Zhao
Kevin Black
Ehsan Hajiramezanali
Gabriele Scalia
N. Diamant
Alex Tseng
Tommaso Biancalani
Sergey Levine
94
52
0
23 Feb 2024
Symbolic Music Generation with Non-Differentiable Rule Guided Diffusion
Symbolic Music Generation with Non-Differentiable Rule Guided Diffusion
Yujia Huang
Adishree S. Ghatare
Yuanzhe Liu
Ziniu Hu
Qinsheng Zhang
Chandramouli Shama Sastry
Francesco Ferroni
Sageev Oore
Yisong Yue
DiffM
113
25
0
22 Feb 2024
Stochastic Localization via Iterative Posterior Sampling
Stochastic Localization via Iterative Posterior Sampling
Louis Grenioux
Maxence Noble
Marylou Gabrié
Alain Durmus
DiffM
90
16
0
16 Feb 2024
Target Score Matching
Target Score Matching
Valentin De Bortoli
M. Hutchinson
Peter Wirnsberger
Arnaud Doucet
DiffM
92
21
0
13 Feb 2024
Particle Denoising Diffusion Sampler
Particle Denoising Diffusion Sampler
Angus Phillips
Hai-Dang Dau
M. Hutchinson
Valentin De Bortoli
George Deligiannidis
Arnaud Doucet
DiffM
135
30
0
09 Feb 2024
Iterated Denoising Energy Matching for Sampling from Boltzmann Densities
Iterated Denoising Energy Matching for Sampling from Boltzmann Densities
Tara Akhound-Sadegh
Jarrid Rector-Brooks
A. Bose
Sarthak Mittal
Pablo Lemos
...
Siamak Ravanbakhsh
Gauthier Gidel
Yoshua Bengio
Nikolay Malkin
Alexander Tong
DiffM
107
58
0
09 Feb 2024
Improved off-policy training of diffusion samplers
Improved off-policy training of diffusion samplers
Marcin Sendera
Minsu Kim
Sarthak Mittal
Pablo Lemos
Luca Scimeca
Jarrid Rector-Brooks
Alexandre Adam
Yoshua Bengio
Nikolay Malkin
OffRL
237
28
0
07 Feb 2024
PQMass: Probabilistic Assessment of the Quality of Generative Models using Probability Mass Estimation
PQMass: Probabilistic Assessment of the Quality of Generative Models using Probability Mass Estimation
Pablo Lemos
Sammy N. Sharief
Nikolay Malkin
Laurence Perreault Levasseur
Y. Hezaveh
Laurence Perreault-Levasseur
Yashar Hezaveh
84
3
0
06 Feb 2024
Denoising Diffusion Variational Inference: Diffusion Models as Expressive Variational Posteriors
Denoising Diffusion Variational Inference: Diffusion Models as Expressive Variational Posteriors
Wasu Top Piriyakulkij
Yingheng Wang
Volodymyr Kuleshov
DiffM
145
1
0
05 Jan 2024
Energy based diffusion generator for efficient sampling of Boltzmann
  distributions
Energy based diffusion generator for efficient sampling of Boltzmann distributions
Yan Wang
Ling Guo
Hao Wu
Tao Zhou
DiffM
97
4
0
04 Jan 2024
Improving Gradient-guided Nested Sampling for Posterior Inference
Improving Gradient-guided Nested Sampling for Posterior Inference
Pablo Lemos
Nikolay Malkin
Will Handley
Yoshua Bengio
Y. Hezaveh
Laurence Perreault Levasseur
BDL
105
11
0
06 Dec 2023
Stochastic Optimal Control Matching
Stochastic Optimal Control Matching
Carles Domingo-Enrich
Jiequn Han
Brandon Amos
Joan Bruna
Ricky T. Q. Chen
DiffM
116
10
0
04 Dec 2023
Diffusion Generative Flow Samplers: Improving learning signals through
  partial trajectory optimization
Diffusion Generative Flow Samplers: Improving learning signals through partial trajectory optimization
Dinghuai Zhang
Ricky Tian Qi Chen
Cheng-Hao Liu
Aaron C. Courville
Yoshua Bengio
125
49
0
04 Oct 2023
Discrete, compositional, and symbolic representations through attractor
  dynamics
Discrete, compositional, and symbolic representations through attractor dynamics
Andrew Nam
Eric Elmoznino
Nikolay Malkin
Chen Sun
Yoshua Bengio
Guillaume Lajoie
90
1
0
03 Oct 2023
Recent Advances in Path Integral Control for Trajectory Optimization: An
  Overview in Theoretical and Algorithmic Perspectives
Recent Advances in Path Integral Control for Trajectory Optimization: An Overview in Theoretical and Algorithmic Perspectives
Muhammad Kazim
JunGee Hong
Min-Gyeom Kim
Kwang-Ki K. Kim
78
20
0
22 Sep 2023
Diffusion Schrödinger Bridges for Bayesian Computation
Diffusion Schrödinger Bridges for Bayesian Computation
J. Heng
Valentin De Bortoli
Arnaud Doucet
DiffM
58
3
0
27 Aug 2023
SE(3) Equivariant Augmented Coupling Flows
SE(3) Equivariant Augmented Coupling Flows
Laurence I. Midgley
Vincent Stimper
Javier Antorán
Emile Mathieu
Bernhard Schölkopf
José Miguel Hernández-Lobato
185
27
0
20 Aug 2023
Improved sampling via learned diffusions
Improved sampling via learned diffusions
Lorenz Richter
Julius Berner
DiffM
121
65
0
03 Jul 2023
Transport meets Variational Inference: Controlled Monte Carlo Diffusions
Transport meets Variational Inference: Controlled Monte Carlo Diffusions
Francisco Vargas
Shreyas Padhy
Denis Blessing
Nikolas Nusken
DiffMOT
135
8
0
03 Jul 2023
On a Class of Gibbs Sampling over Networks
On a Class of Gibbs Sampling over Networks
Bo Yuan
JiaoJiao Fan
Jiaming Liang
Andre Wibisono
Yongxin Chen
96
6
0
23 Jun 2023
Entropy-based Training Methods for Scalable Neural Implicit Sampler
Entropy-based Training Methods for Scalable Neural Implicit Sampler
Weijian Luo
Boya Zhang
Zhihua Zhang
91
12
0
08 Jun 2023
Unpaired Image-to-Image Translation via Neural Schrödinger Bridge
Unpaired Image-to-Image Translation via Neural Schrödinger Bridge
Beomsu Kim
Gihyun Kwon
Kwanyoung Kim
Jong Chul Ye
DiffMOT
87
66
0
24 May 2023
Blackout Diffusion: Generative Diffusion Models in Discrete-State Spaces
Blackout Diffusion: Generative Diffusion Models in Discrete-State Spaces
Javier E. Santos
Z. Fox
Nicholas Lubbers
Yen Ting Lin
DiffM
88
20
0
18 May 2023
Denoising Diffusion Samplers
Denoising Diffusion Samplers
Francisco Vargas
Will Grathwohl
Arnaud Doucet
DiffM
84
91
0
27 Feb 2023
Aligned Diffusion Schrödinger Bridges
Aligned Diffusion Schrödinger Bridges
Vignesh Ram Somnath
Matteo Pariset
Ya-Ping Hsieh
María Rodríguez Martínez
Andreas Krause
Charlotte Bunne
DiffM
230
39
0
22 Feb 2023
I$^2$SB: Image-to-Image Schrödinger Bridge
I2^22SB: Image-to-Image Schrödinger Bridge
Guan-Horng Liu
Arash Vahdat
De-An Huang
Evangelos A. Theodorou
Weili Nie
Anima Anandkumar
DiffM
116
154
0
12 Feb 2023
Improving and generalizing flow-based generative models with minibatch
  optimal transport
Improving and generalizing flow-based generative models with minibatch optimal transport
Alexander Tong
Kilian Fatras
Nikolay Malkin
G. Huguet
Yanlei Zhang
Jarrid Rector-Brooks
Guy Wolf
Yoshua Bengio
OODDiffMOT
123
308
0
01 Feb 2023
A theory of continuous generative flow networks
A theory of continuous generative flow networks
Salem Lahlou
T. Deleu
Pablo Lemos
Dinghuai Zhang
Alexandra Volokhova
Alex Hernández-García
Léna Néhale Ezzine
Yoshua Bengio
Nikolay Malkin
AI4CE
133
93
0
30 Jan 2023
An optimal control perspective on diffusion-based generative modeling
An optimal control perspective on diffusion-based generative modeling
Julius Berner
Lorenz Richter
Karen Ullrich
DiffM
154
97
0
02 Nov 2022
Deep Generalized Schrödinger Bridge
Deep Generalized Schrödinger Bridge
Guan-Horng Liu
T. Chen
Oswin So
Evangelos A. Theodorou
OTAI4CE
93
37
0
20 Sep 2022
Neural Lagrangian Schrödinger Bridge: Diffusion Modeling for
  Population Dynamics
Neural Lagrangian Schrödinger Bridge: Diffusion Modeling for Population Dynamics
Takeshi Koshizuka
Issei Sato
94
6
0
11 Apr 2022
Bayesian Learning via Neural Schrödinger-Föllmer Flows
Bayesian Learning via Neural Schrödinger-Föllmer Flows
Francisco Vargas
Andrius Ovsianas
David Fernandes
Mark Girolami
Neil D. Lawrence
Nikolas Nusken
BDL
150
49
0
20 Nov 2021
Previous
12