ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.15141
  4. Cited By
Path Integral Sampler: a stochastic control approach for sampling
v1v2 (latest)

Path Integral Sampler: a stochastic control approach for sampling

30 November 2021
Qinsheng Zhang
Yongxin Chen
    DiffM
ArXiv (abs)PDFHTML

Papers citing "Path Integral Sampler: a stochastic control approach for sampling"

50 / 84 papers shown
Title
Progressive Inference-Time Annealing of Diffusion Models for Sampling from Boltzmann Densities
Progressive Inference-Time Annealing of Diffusion Models for Sampling from Boltzmann Densities
Tara Akhound-Sadegh
Jungyoon Lee
A. Bose
Valentin De Bortoli
Arnaud Doucet
Michael M. Bronstein
Dominique Beaini
Siamak Ravanbakhsh
Kirill Neklyudov
Alexander Tong
DiffM
17
0
0
19 Jun 2025
Rethinking Losses for Diffusion Bridge Samplers
Rethinking Losses for Diffusion Bridge Samplers
Sebastian Sanokowski
Lukas Gruber
Christoph Bartmann
Sepp Hochreiter
Sebastian Lehner
DiffM
128
0
0
12 Jun 2025
Path Integral Optimiser: Global Optimisation via Neural Schrödinger-Föllmer Diffusion
Path Integral Optimiser: Global Optimisation via Neural Schrödinger-Föllmer Diffusion
Max McGuinness
Eirik Fladmark
Francisco Vargas
18
0
0
07 Jun 2025
Progressive Tempering Sampler with Diffusion
Severi Rissanen
RuiKang OuYang
Jiajun He
Wenlin Chen
Markus Heinonen
Arno Solin
José Miguel Hernández-Lobato
DiffM
110
1
0
05 Jun 2025
Adaptive Destruction Processes for Diffusion Samplers
Adaptive Destruction Processes for Diffusion Samplers
Timofei Gritsaev
Nikita Morozov
Kirill Tamogashev
D. Tiapkin
S. Samsonov
A. Naumov
Dmitry Vetrov
Nikolay Malkin
54
0
0
02 Jun 2025
Energy-based generator matching: A neural sampler for general state space
Energy-based generator matching: A neural sampler for general state space
Dongyeop Woo
Minsu Kim
Minkyu Kim
Kiyoung Seong
SungSoo Ahn
95
0
0
26 May 2025
Importance Weighted Score Matching for Diffusion Samplers with Enhanced Mode Coverage
Importance Weighted Score Matching for Diffusion Samplers with Enhanced Mode Coverage
Chenguang Wang
Xiaoyu Zhang
Kaiyuan Cui
Weichen Zhao
Yongtao Guan
Tianshu Yu
DiffM
102
0
0
26 May 2025
On scalable and efficient training of diffusion samplers
On scalable and efficient training of diffusion samplers
Minkyu Kim
Kiyoung Seong
Dongyeop Woo
SungSoo Ahn
Minsu Kim
DiffM
143
0
0
26 May 2025
Energy-Based Coarse-Graining in Molecular Dynamics: A Flow-Based Framework Without Data
Energy-Based Coarse-Graining in Molecular Dynamics: A Flow-Based Framework Without Data
Maximilian Stupp
P. S. Koutsourelakis
85
0
0
29 Apr 2025
Improving the evaluation of samplers on multi-modal targets
Improving the evaluation of samplers on multi-modal targets
Louis Grenioux
Maxence Noble
Marylou Gabrié
454
0
0
11 Apr 2025
SpectR: Dynamically Composing LM Experts with Spectral Routing
SpectR: Dynamically Composing LM Experts with Spectral Routing
William Fleshman
Benjamin Van Durme
MoMeMoE
112
2
0
04 Apr 2025
Potential Score Matching: Debiasing Molecular Structure Sampling with Potential Energy Guidance
Potential Score Matching: Debiasing Molecular Structure Sampling with Potential Energy Guidance
Liya Guo
Zun Wang
Chang-Shu Liu
Junlong Li
Pipi Hu
Yi Zhu
DiffM
73
0
0
18 Mar 2025
Underdamped Diffusion Bridges with Applications to Sampling
Denis Blessing
Julius Berner
Lorenz Richter
Gerhard Neumann
DiffM
138
6
0
02 Mar 2025
End-To-End Learning of Gaussian Mixture Priors for Diffusion Sampler
Denis Blessing
Xiaogang Jia
Gerhard Neumann
DiffM
100
1
0
01 Mar 2025
Value Gradient Sampler: Sampling as Sequential Decision Making
Value Gradient Sampler: Sampling as Sequential Decision Making
Sangwoong Yoon
Himchan Hwang
Hyeokju Jeong
Dong Kyu Shin
Che-Sang Park
Sehee Kwon
Frank C. Park
143
0
0
18 Feb 2025
In-Context Parametric Inference: Point or Distribution Estimators?
In-Context Parametric Inference: Point or Distribution Estimators?
Sarthak Mittal
Yoshua Bengio
Nikolay Malkin
Guillaume Lajoie
128
0
0
17 Feb 2025
Single-Step Consistent Diffusion Samplers
Single-Step Consistent Diffusion Samplers
Pascal Jutras-Dubé
Patrick Pynadath
Ruqi Zhang
DiffM
166
0
0
17 Feb 2025
Neural Flow Samplers with Shortcut Models
Neural Flow Samplers with Shortcut Models
Wuhao Chen
Zijing Ou
Yingzhen Li
242
2
0
11 Feb 2025
Amortized In-Context Bayesian Posterior Estimation
Sarthak Mittal
Niels Leif Bracher
Guillaume Lajoie
P. Jaini
Marcus A. Brubaker
114
2
0
10 Feb 2025
CAFuser: Condition-Aware Multimodal Fusion for Robust Semantic Perception of Driving Scenes
CAFuser: Condition-Aware Multimodal Fusion for Robust Semantic Perception of Driving Scenes
Tim Broedermann
Daniel Gehrig
Yuqian Fu
Luc Van Gool
133
31
0
28 Jan 2025
From discrete-time policies to continuous-time diffusion samplers: Asymptotic equivalences and faster training
From discrete-time policies to continuous-time diffusion samplers: Asymptotic equivalences and faster training
Julius Berner
Lorenz Richter
Marcin Sendera
Jarrid Rector-Brooks
Nikolay Malkin
OffRL
157
8
0
10 Jan 2025
Sequential Controlled Langevin Diffusions
Sequential Controlled Langevin Diffusions
Junhua Chen
Lorenz Richter
Julius Berner
Denis Blessing
Gerhard Neumann
A. Anandkumar
140
22
0
10 Dec 2024
Denoising Fisher Training For Neural Implicit Samplers
Denoising Fisher Training For Neural Implicit Samplers
Weijian Luo
Wei Deng
78
0
0
03 Nov 2024
Path Integral Control for Hybrid Dynamical Systems
Path Integral Control for Hybrid Dynamical Systems
Hongzhe Yu
Diana Frias Franco
Aaron M. Johnson
Yongxin Chen
65
0
0
01 Nov 2024
Learned Reference-based Diffusion Sampling for multi-modal distributions
Learned Reference-based Diffusion Sampling for multi-modal distributions
Maxence Noble
Louis Grenioux
Marylou Gabrié
Alain Durmus
DiffM
134
6
0
25 Oct 2024
Action abstractions for amortized sampling
Action abstractions for amortized sampling
Oussama Boussif
Léna Néhale Ezzine
J. Viviano
Michał Koziarski
Moksh Jain
Nikolay Malkin
Emmanuel Bengio
Rim Assouel
Yoshua Bengio
96
0
0
19 Oct 2024
Training Neural Samplers with Reverse Diffusive KL Divergence
Training Neural Samplers with Reverse Diffusive KL Divergence
Wenlin Chen
Jiajun He
Mingtian Zhang
David Barber
José Miguel Hernández-Lobato
DiffM
137
8
0
16 Oct 2024
Amortized Control of Continuous State Space Feynman-Kac Model for Irregular Time Series
Amortized Control of Continuous State Space Feynman-Kac Model for Irregular Time Series
Byoungwoo Park
Hyungi Lee
Juho Lee
AI4TS
211
1
0
08 Oct 2024
AutoLoRA: AutoGuidance Meets Low-Rank Adaptation for Diffusion Models
AutoLoRA: AutoGuidance Meets Low-Rank Adaptation for Diffusion Models
Artur Kasymov
Marcin Sendera
Michał Stypułkowski
Maciej Ziȩba
Przemysław Spurek
142
1
0
04 Oct 2024
NETS: A Non-Equilibrium Transport Sampler
NETS: A Non-Equilibrium Transport Sampler
M. S. Albergo
Eric Vanden-Eijnden
DiffM
136
22
0
03 Oct 2024
Adaptive teachers for amortized samplers
Adaptive teachers for amortized samplers
Minsu Kim
Sanghyeok Choi
Taeyoung Yun
Emmanuel Bengio
Leo Feng
Jarrid Rector-Brooks
Sungsoo Ahn
Jinkyoo Park
Nikolay Malkin
Yoshua Bengio
483
7
0
02 Oct 2024
BNEM: A Boltzmann Sampler Based on Bootstrapped Noised Energy Matching
BNEM: A Boltzmann Sampler Based on Bootstrapped Noised Energy Matching
RuiKang OuYang
Bo Qiang
José Miguel Hernández-Lobato
151
0
0
15 Sep 2024
Neural Entropy
Neural Entropy
Akhil Premkumar
DiffM
201
1
0
05 Sep 2024
Iterated Energy-based Flow Matching for Sampling from Boltzmann
  Densities
Iterated Energy-based Flow Matching for Sampling from Boltzmann Densities
Dongyeop Woo
SungSoo Ahn
81
8
0
29 Aug 2024
Flexible Bayesian Last Layer Models Using Implicit Priors and Diffusion
  Posterior Sampling
Flexible Bayesian Last Layer Models Using Implicit Priors and Diffusion Posterior Sampling
Jian Xu
Zhiqi Lin
Shigui Li
Min Chen
Junmei Yang
Delu Zeng
John Paisley
BDL
61
0
0
07 Aug 2024
Importance Corrected Neural JKO Sampling
Importance Corrected Neural JKO Sampling
Johannes Hertrich
Robert Gruhlke
102
2
0
29 Jul 2024
Sparse Inducing Points in Deep Gaussian Processes: Enhancing Modeling
  with Denoising Diffusion Variational Inference
Sparse Inducing Points in Deep Gaussian Processes: Enhancing Modeling with Denoising Diffusion Variational Inference
Jian Xu
Delu Zeng
John Paisley
DiffM
85
1
0
24 Jul 2024
Understanding Reinforcement Learning-Based Fine-Tuning of Diffusion
  Models: A Tutorial and Review
Understanding Reinforcement Learning-Based Fine-Tuning of Diffusion Models: A Tutorial and Review
Masatoshi Uehara
Yulai Zhao
Tommaso Biancalani
Sergey Levine
144
32
0
18 Jul 2024
Dynamical Measure Transport and Neural PDE Solvers for Sampling
Dynamical Measure Transport and Neural PDE Solvers for Sampling
Jingtong Sun
Julius Berner
Lorenz Richter
Marius Zeinhofer
Johannes Müller
Kamyar Azizzadenesheli
Anima Anandkumar
OTDiffM
89
11
0
10 Jul 2024
Maximum Entropy Inverse Reinforcement Learning of Diffusion Models with
  Energy-Based Models
Maximum Entropy Inverse Reinforcement Learning of Diffusion Models with Energy-Based Models
Sangwoong Yoon
Himchan Hwang
Dohyun Kwon
Yung-Kyun Noh
Frank C. Park
85
3
0
30 Jun 2024
Beyond ELBOs: A Large-Scale Evaluation of Variational Methods for
  Sampling
Beyond ELBOs: A Large-Scale Evaluation of Variational Methods for Sampling
Denis Blessing
Xiaogang Jia
Johannes Esslinger
Francisco Vargas
Gerhard Neumann
135
27
0
11 Jun 2024
Amortizing intractable inference in diffusion models for vision, language, and control
Amortizing intractable inference in diffusion models for vision, language, and control
S. Venkatraman
Moksh Jain
Luca Scimeca
Minsu Kim
Marcin Sendera
...
Alexandre Adam
Jarrid Rector-Brooks
Yoshua Bengio
Glen Berseth
Nikolay Malkin
191
32
0
31 May 2024
Stochastic Optimal Control for Diffusion Bridges in Function Spaces
Stochastic Optimal Control for Diffusion Bridges in Function Spaces
Byoungwoo Park
Jungwon Choi
Sungbin Lim
Juho Lee
136
4
0
31 May 2024
Bridging Model-Based Optimization and Generative Modeling via
  Conservative Fine-Tuning of Diffusion Models
Bridging Model-Based Optimization and Generative Modeling via Conservative Fine-Tuning of Diffusion Models
Masatoshi Uehara
Yulai Zhao
Ehsan Hajiramezanali
Gabriele Scalia
Gökçen Eraslan
Avantika Lal
Sergey Levine
Tommaso Biancalani
133
16
0
30 May 2024
Markovian Flow Matching: Accelerating MCMC with Continuous Normalizing
  Flows
Markovian Flow Matching: Accelerating MCMC with Continuous Normalizing Flows
A. Cabezas
Louis Sharrock
Christopher Nemeth
71
4
0
23 May 2024
Control, Transport and Sampling: Towards Better Loss Design
Control, Transport and Sampling: Towards Better Loss Design
Qijia Jiang
David Nabergoj
OT
68
0
0
22 May 2024
One-step data-driven generative model via Schrödinger Bridge
One-step data-driven generative model via Schrödinger Bridge
Hanwen Huang
DiffM
80
4
0
21 May 2024
Liouville Flow Importance Sampler
Liouville Flow Importance Sampler
Yifeng Tian
Nishant Panda
Yen Ting Lin
121
13
0
03 May 2024
Physics-Informed Diffusion Models
Physics-Informed Diffusion Models
Jan-Hendrik Bastek
WaiChing Sun
D. Kochmann
DiffMAI4CE
192
20
0
21 Mar 2024
Probabilistic Forecasting with Stochastic Interpolants and Föllmer
  Processes
Probabilistic Forecasting with Stochastic Interpolants and Föllmer Processes
Yifan Chen
Mark Goldstein
Mengjian Hua
M. S. Albergo
Nicholas M. Boffi
Eric Vanden-Eijnden
AI4TS
110
19
0
20 Mar 2024
12
Next