Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2111.15141
Cited By
v1
v2 (latest)
Path Integral Sampler: a stochastic control approach for sampling
30 November 2021
Qinsheng Zhang
Yongxin Chen
DiffM
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Path Integral Sampler: a stochastic control approach for sampling"
50 / 84 papers shown
Title
Progressive Inference-Time Annealing of Diffusion Models for Sampling from Boltzmann Densities
Tara Akhound-Sadegh
Jungyoon Lee
A. Bose
Valentin De Bortoli
Arnaud Doucet
Michael M. Bronstein
Dominique Beaini
Siamak Ravanbakhsh
Kirill Neklyudov
Alexander Tong
DiffM
17
0
0
19 Jun 2025
Rethinking Losses for Diffusion Bridge Samplers
Sebastian Sanokowski
Lukas Gruber
Christoph Bartmann
Sepp Hochreiter
Sebastian Lehner
DiffM
128
0
0
12 Jun 2025
Path Integral Optimiser: Global Optimisation via Neural Schrödinger-Föllmer Diffusion
Max McGuinness
Eirik Fladmark
Francisco Vargas
18
0
0
07 Jun 2025
Progressive Tempering Sampler with Diffusion
Severi Rissanen
RuiKang OuYang
Jiajun He
Wenlin Chen
Markus Heinonen
Arno Solin
José Miguel Hernández-Lobato
DiffM
110
1
0
05 Jun 2025
Adaptive Destruction Processes for Diffusion Samplers
Timofei Gritsaev
Nikita Morozov
Kirill Tamogashev
D. Tiapkin
S. Samsonov
A. Naumov
Dmitry Vetrov
Nikolay Malkin
54
0
0
02 Jun 2025
Energy-based generator matching: A neural sampler for general state space
Dongyeop Woo
Minsu Kim
Minkyu Kim
Kiyoung Seong
SungSoo Ahn
95
0
0
26 May 2025
Importance Weighted Score Matching for Diffusion Samplers with Enhanced Mode Coverage
Chenguang Wang
Xiaoyu Zhang
Kaiyuan Cui
Weichen Zhao
Yongtao Guan
Tianshu Yu
DiffM
102
0
0
26 May 2025
On scalable and efficient training of diffusion samplers
Minkyu Kim
Kiyoung Seong
Dongyeop Woo
SungSoo Ahn
Minsu Kim
DiffM
143
0
0
26 May 2025
Energy-Based Coarse-Graining in Molecular Dynamics: A Flow-Based Framework Without Data
Maximilian Stupp
P. S. Koutsourelakis
85
0
0
29 Apr 2025
Improving the evaluation of samplers on multi-modal targets
Louis Grenioux
Maxence Noble
Marylou Gabrié
454
0
0
11 Apr 2025
SpectR: Dynamically Composing LM Experts with Spectral Routing
William Fleshman
Benjamin Van Durme
MoMe
MoE
112
2
0
04 Apr 2025
Potential Score Matching: Debiasing Molecular Structure Sampling with Potential Energy Guidance
Liya Guo
Zun Wang
Chang-Shu Liu
Junlong Li
Pipi Hu
Yi Zhu
DiffM
73
0
0
18 Mar 2025
Underdamped Diffusion Bridges with Applications to Sampling
Denis Blessing
Julius Berner
Lorenz Richter
Gerhard Neumann
DiffM
138
6
0
02 Mar 2025
End-To-End Learning of Gaussian Mixture Priors for Diffusion Sampler
Denis Blessing
Xiaogang Jia
Gerhard Neumann
DiffM
100
1
0
01 Mar 2025
Value Gradient Sampler: Sampling as Sequential Decision Making
Sangwoong Yoon
Himchan Hwang
Hyeokju Jeong
Dong Kyu Shin
Che-Sang Park
Sehee Kwon
Frank C. Park
143
0
0
18 Feb 2025
In-Context Parametric Inference: Point or Distribution Estimators?
Sarthak Mittal
Yoshua Bengio
Nikolay Malkin
Guillaume Lajoie
128
0
0
17 Feb 2025
Single-Step Consistent Diffusion Samplers
Pascal Jutras-Dubé
Patrick Pynadath
Ruqi Zhang
DiffM
166
0
0
17 Feb 2025
Neural Flow Samplers with Shortcut Models
Wuhao Chen
Zijing Ou
Yingzhen Li
242
2
0
11 Feb 2025
Amortized In-Context Bayesian Posterior Estimation
Sarthak Mittal
Niels Leif Bracher
Guillaume Lajoie
P. Jaini
Marcus A. Brubaker
114
2
0
10 Feb 2025
CAFuser: Condition-Aware Multimodal Fusion for Robust Semantic Perception of Driving Scenes
Tim Broedermann
Daniel Gehrig
Yuqian Fu
Luc Van Gool
133
31
0
28 Jan 2025
From discrete-time policies to continuous-time diffusion samplers: Asymptotic equivalences and faster training
Julius Berner
Lorenz Richter
Marcin Sendera
Jarrid Rector-Brooks
Nikolay Malkin
OffRL
157
8
0
10 Jan 2025
Sequential Controlled Langevin Diffusions
Junhua Chen
Lorenz Richter
Julius Berner
Denis Blessing
Gerhard Neumann
A. Anandkumar
140
22
0
10 Dec 2024
Denoising Fisher Training For Neural Implicit Samplers
Weijian Luo
Wei Deng
78
0
0
03 Nov 2024
Path Integral Control for Hybrid Dynamical Systems
Hongzhe Yu
Diana Frias Franco
Aaron M. Johnson
Yongxin Chen
65
0
0
01 Nov 2024
Learned Reference-based Diffusion Sampling for multi-modal distributions
Maxence Noble
Louis Grenioux
Marylou Gabrié
Alain Durmus
DiffM
134
6
0
25 Oct 2024
Action abstractions for amortized sampling
Oussama Boussif
Léna Néhale Ezzine
J. Viviano
Michał Koziarski
Moksh Jain
Nikolay Malkin
Emmanuel Bengio
Rim Assouel
Yoshua Bengio
96
0
0
19 Oct 2024
Training Neural Samplers with Reverse Diffusive KL Divergence
Wenlin Chen
Jiajun He
Mingtian Zhang
David Barber
José Miguel Hernández-Lobato
DiffM
137
8
0
16 Oct 2024
Amortized Control of Continuous State Space Feynman-Kac Model for Irregular Time Series
Byoungwoo Park
Hyungi Lee
Juho Lee
AI4TS
211
1
0
08 Oct 2024
AutoLoRA: AutoGuidance Meets Low-Rank Adaptation for Diffusion Models
Artur Kasymov
Marcin Sendera
Michał Stypułkowski
Maciej Ziȩba
Przemysław Spurek
142
1
0
04 Oct 2024
NETS: A Non-Equilibrium Transport Sampler
M. S. Albergo
Eric Vanden-Eijnden
DiffM
136
22
0
03 Oct 2024
Adaptive teachers for amortized samplers
Minsu Kim
Sanghyeok Choi
Taeyoung Yun
Emmanuel Bengio
Leo Feng
Jarrid Rector-Brooks
Sungsoo Ahn
Jinkyoo Park
Nikolay Malkin
Yoshua Bengio
483
7
0
02 Oct 2024
BNEM: A Boltzmann Sampler Based on Bootstrapped Noised Energy Matching
RuiKang OuYang
Bo Qiang
José Miguel Hernández-Lobato
151
0
0
15 Sep 2024
Neural Entropy
Akhil Premkumar
DiffM
201
1
0
05 Sep 2024
Iterated Energy-based Flow Matching for Sampling from Boltzmann Densities
Dongyeop Woo
SungSoo Ahn
81
8
0
29 Aug 2024
Flexible Bayesian Last Layer Models Using Implicit Priors and Diffusion Posterior Sampling
Jian Xu
Zhiqi Lin
Shigui Li
Min Chen
Junmei Yang
Delu Zeng
John Paisley
BDL
61
0
0
07 Aug 2024
Importance Corrected Neural JKO Sampling
Johannes Hertrich
Robert Gruhlke
102
2
0
29 Jul 2024
Sparse Inducing Points in Deep Gaussian Processes: Enhancing Modeling with Denoising Diffusion Variational Inference
Jian Xu
Delu Zeng
John Paisley
DiffM
85
1
0
24 Jul 2024
Understanding Reinforcement Learning-Based Fine-Tuning of Diffusion Models: A Tutorial and Review
Masatoshi Uehara
Yulai Zhao
Tommaso Biancalani
Sergey Levine
144
32
0
18 Jul 2024
Dynamical Measure Transport and Neural PDE Solvers for Sampling
Jingtong Sun
Julius Berner
Lorenz Richter
Marius Zeinhofer
Johannes Müller
Kamyar Azizzadenesheli
Anima Anandkumar
OT
DiffM
89
11
0
10 Jul 2024
Maximum Entropy Inverse Reinforcement Learning of Diffusion Models with Energy-Based Models
Sangwoong Yoon
Himchan Hwang
Dohyun Kwon
Yung-Kyun Noh
Frank C. Park
85
3
0
30 Jun 2024
Beyond ELBOs: A Large-Scale Evaluation of Variational Methods for Sampling
Denis Blessing
Xiaogang Jia
Johannes Esslinger
Francisco Vargas
Gerhard Neumann
135
27
0
11 Jun 2024
Amortizing intractable inference in diffusion models for vision, language, and control
S. Venkatraman
Moksh Jain
Luca Scimeca
Minsu Kim
Marcin Sendera
...
Alexandre Adam
Jarrid Rector-Brooks
Yoshua Bengio
Glen Berseth
Nikolay Malkin
191
32
0
31 May 2024
Stochastic Optimal Control for Diffusion Bridges in Function Spaces
Byoungwoo Park
Jungwon Choi
Sungbin Lim
Juho Lee
136
4
0
31 May 2024
Bridging Model-Based Optimization and Generative Modeling via Conservative Fine-Tuning of Diffusion Models
Masatoshi Uehara
Yulai Zhao
Ehsan Hajiramezanali
Gabriele Scalia
Gökçen Eraslan
Avantika Lal
Sergey Levine
Tommaso Biancalani
133
16
0
30 May 2024
Markovian Flow Matching: Accelerating MCMC with Continuous Normalizing Flows
A. Cabezas
Louis Sharrock
Christopher Nemeth
71
4
0
23 May 2024
Control, Transport and Sampling: Towards Better Loss Design
Qijia Jiang
David Nabergoj
OT
68
0
0
22 May 2024
One-step data-driven generative model via Schrödinger Bridge
Hanwen Huang
DiffM
80
4
0
21 May 2024
Liouville Flow Importance Sampler
Yifeng Tian
Nishant Panda
Yen Ting Lin
121
13
0
03 May 2024
Physics-Informed Diffusion Models
Jan-Hendrik Bastek
WaiChing Sun
D. Kochmann
DiffM
AI4CE
192
20
0
21 Mar 2024
Probabilistic Forecasting with Stochastic Interpolants and Föllmer Processes
Yifan Chen
Mark Goldstein
Mengjian Hua
M. S. Albergo
Nicholas M. Boffi
Eric Vanden-Eijnden
AI4TS
110
19
0
20 Mar 2024
1
2
Next