ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.15141
  4. Cited By
Path Integral Sampler: a stochastic control approach for sampling

Path Integral Sampler: a stochastic control approach for sampling

30 November 2021
Qinsheng Zhang
Yongxin Chen
    DiffM
ArXivPDFHTML

Papers citing "Path Integral Sampler: a stochastic control approach for sampling"

50 / 76 papers shown
Title
Energy-Based Coarse-Graining in Molecular Dynamics: A Flow-Based Framework Without Data
Energy-Based Coarse-Graining in Molecular Dynamics: A Flow-Based Framework Without Data
Maximilian Stupp
P. S. Koutsourelakis
40
0
0
29 Apr 2025
Improving the evaluation of samplers on multi-modal targets
Improving the evaluation of samplers on multi-modal targets
Louis Grenioux
Maxence Noble
Marylou Gabrié
116
0
0
11 Apr 2025
SpectR: Dynamically Composing LM Experts with Spectral Routing
SpectR: Dynamically Composing LM Experts with Spectral Routing
William Fleshman
Benjamin Van Durme
MoMe
MoE
60
0
0
04 Apr 2025
Potential Score Matching: Debiasing Molecular Structure Sampling with Potential Energy Guidance
Potential Score Matching: Debiasing Molecular Structure Sampling with Potential Energy Guidance
Liya Guo
Zun Wang
Chang-Shu Liu
Jiashi Li
Pipi Hu
Yi Zhu
DiffM
45
0
0
18 Mar 2025
Underdamped Diffusion Bridges with Applications to Sampling
Denis Blessing
Julius Berner
Lorenz Richter
Gerhard Neumann
DiffM
39
1
0
02 Mar 2025
End-To-End Learning of Gaussian Mixture Priors for Diffusion Sampler
Denis Blessing
Xiaogang Jia
Gerhard Neumann
DiffM
48
0
0
01 Mar 2025
Value Gradient Sampler: Sampling as Sequential Decision Making
Value Gradient Sampler: Sampling as Sequential Decision Making
Sangwoong Yoon
Himchan Hwang
Hyeokju Jeong
Dong Kyu Shin
Che-Sang Park
Sehee Kwon
Frank C. Park
74
0
0
18 Feb 2025
In-Context Parametric Inference: Point or Distribution Estimators?
In-Context Parametric Inference: Point or Distribution Estimators?
Sarthak Mittal
Yoshua Bengio
Nikolay Malkin
Guillaume Lajoie
72
0
0
17 Feb 2025
Single-Step Consistent Diffusion Samplers
Single-Step Consistent Diffusion Samplers
Pascal Jutras-Dubé
Patrick Pynadath
Ruqi Zhang
DiffM
78
0
0
17 Feb 2025
Neural Flow Samplers with Shortcut Models
Neural Flow Samplers with Shortcut Models
Wuhao Chen
Zijing Ou
Yingzhen Li
85
0
0
11 Feb 2025
Amortized In-Context Bayesian Posterior Estimation
Sarthak Mittal
Niels Leif Bracher
Guillaume Lajoie
P. Jaini
Marcus A. Brubaker
62
1
0
10 Feb 2025
CAFuser: Condition-Aware Multimodal Fusion for Robust Semantic Perception of Driving Scenes
CAFuser: Condition-Aware Multimodal Fusion for Robust Semantic Perception of Driving Scenes
Tim Broedermann
Christos Sakaridis
Yuqian Fu
Luc Van Gool
62
5
0
28 Jan 2025
From discrete-time policies to continuous-time diffusion samplers: Asymptotic equivalences and faster training
From discrete-time policies to continuous-time diffusion samplers: Asymptotic equivalences and faster training
Julius Berner
Lorenz Richter
Marcin Sendera
Jarrid Rector-Brooks
Nikolay Malkin
OffRL
60
3
0
10 Jan 2025
Denoising Fisher Training For Neural Implicit Samplers
Denoising Fisher Training For Neural Implicit Samplers
Weijian Luo
Wei Deng
36
0
0
03 Nov 2024
Path Integral Control for Hybrid Dynamical Systems
Path Integral Control for Hybrid Dynamical Systems
Hongzhe Yu
Diana Frias Franco
Aaron M. Johnson
Yongxin Chen
28
0
0
01 Nov 2024
Learned Reference-based Diffusion Sampling for multi-modal distributions
Learned Reference-based Diffusion Sampling for multi-modal distributions
Maxence Noble
Louis Grenioux
Marylou Gabrié
Alain Durmus
DiffM
31
2
0
25 Oct 2024
Action abstractions for amortized sampling
Action abstractions for amortized sampling
Oussama Boussif
Léna Néhale Ezzine
J. Viviano
Michał Koziarski
Moksh Jain
Nikolay Malkin
Emmanuel Bengio
Rim Assouel
Yoshua Bengio
28
0
0
19 Oct 2024
Training Neural Samplers with Reverse Diffusive KL Divergence
Training Neural Samplers with Reverse Diffusive KL Divergence
Jiajun He
Wenlin Chen
Mingtian Zhang
David Barber
José Miguel Hernández-Lobato
DiffM
37
4
0
16 Oct 2024
Amortized Control of Continuous State Space Feynman-Kac Model for Irregular Time Series
Amortized Control of Continuous State Space Feynman-Kac Model for Irregular Time Series
Byoungwoo Park
Hyungi Lee
Juho Lee
AI4TS
41
0
0
08 Oct 2024
An Efficient On-Policy Deep Learning Framework for Stochastic Optimal Control
An Efficient On-Policy Deep Learning Framework for Stochastic Optimal Control
Mengjian Hua
Matthieu Laurière
Eric Vanden-Eijnden
31
3
0
07 Oct 2024
AutoLoRA: AutoGuidance Meets Low-Rank Adaptation for Diffusion Models
AutoLoRA: AutoGuidance Meets Low-Rank Adaptation for Diffusion Models
Artur Kasymov
Marcin Sendera
Michał Stypułkowski
Maciej Ziȩba
P. Spurek
33
1
0
04 Oct 2024
NETS: A Non-Equilibrium Transport Sampler
NETS: A Non-Equilibrium Transport Sampler
M. S. Albergo
Eric Vanden-Eijnden
DiffM
47
9
0
03 Oct 2024
Adaptive teachers for amortized samplers
Adaptive teachers for amortized samplers
Minsu Kim
Sanghyeok Choi
Taeyoung Yun
Emmanuel Bengio
Leo Feng
Jarrid Rector-Brooks
Sungsoo Ahn
Jinkyoo Park
Nikolay Malkin
Yoshua Bengio
159
2
0
02 Oct 2024
BNEM: A Boltzmann Sampler Based on Bootstrapped Noised Energy Matching
BNEM: A Boltzmann Sampler Based on Bootstrapped Noised Energy Matching
RuiKang OuYang
Bo Qiang
José Miguel Hernández-Lobato
88
0
0
15 Sep 2024
Neural Entropy
Neural Entropy
Akhil Premkumar
DiffM
26
0
0
05 Sep 2024
Iterated Energy-based Flow Matching for Sampling from Boltzmann
  Densities
Iterated Energy-based Flow Matching for Sampling from Boltzmann Densities
Dongyeop Woo
Sungsoo Ahn
32
5
0
29 Aug 2024
Flexible Bayesian Last Layer Models Using Implicit Priors and Diffusion
  Posterior Sampling
Flexible Bayesian Last Layer Models Using Implicit Priors and Diffusion Posterior Sampling
Jian Xu
Zhiqi Lin
Shigui Li
Min Chen
Junmei Yang
Delu Zeng
John Paisley
BDL
28
0
0
07 Aug 2024
Sparse Inducing Points in Deep Gaussian Processes: Enhancing Modeling
  with Denoising Diffusion Variational Inference
Sparse Inducing Points in Deep Gaussian Processes: Enhancing Modeling with Denoising Diffusion Variational Inference
Jian Xu
Delu Zeng
John Paisley
DiffM
31
1
0
24 Jul 2024
Understanding Reinforcement Learning-Based Fine-Tuning of Diffusion
  Models: A Tutorial and Review
Understanding Reinforcement Learning-Based Fine-Tuning of Diffusion Models: A Tutorial and Review
Masatoshi Uehara
Yulai Zhao
Tommaso Biancalani
Sergey Levine
63
22
0
18 Jul 2024
Dynamical Measure Transport and Neural PDE Solvers for Sampling
Dynamical Measure Transport and Neural PDE Solvers for Sampling
Jingtong Sun
Julius Berner
Lorenz Richter
Marius Zeinhofer
Johannes Müller
Kamyar Azizzadenesheli
Anima Anandkumar
OT
DiffM
39
8
0
10 Jul 2024
Maximum Entropy Inverse Reinforcement Learning of Diffusion Models with
  Energy-Based Models
Maximum Entropy Inverse Reinforcement Learning of Diffusion Models with Energy-Based Models
Sangwoong Yoon
Himchan Hwang
Dohyun Kwon
Yung-Kyun Noh
Frank C. Park
34
3
0
30 Jun 2024
Beyond ELBOs: A Large-Scale Evaluation of Variational Methods for
  Sampling
Beyond ELBOs: A Large-Scale Evaluation of Variational Methods for Sampling
Denis Blessing
Xiaogang Jia
Johannes Esslinger
Francisco Vargas
Gerhard Neumann
50
16
0
11 Jun 2024
Amortizing intractable inference in diffusion models for vision, language, and control
Amortizing intractable inference in diffusion models for vision, language, and control
S. Venkatraman
Moksh Jain
Luca Scimeca
Minsu Kim
Marcin Sendera
...
Alexandre Adam
Jarrid Rector-Brooks
Yoshua Bengio
Glen Berseth
Nikolay Malkin
68
24
0
31 May 2024
Stochastic Optimal Control for Diffusion Bridges in Function Spaces
Stochastic Optimal Control for Diffusion Bridges in Function Spaces
Byoungwoo Park
Jungwon Choi
Sungbin Lim
Juho Lee
50
3
0
31 May 2024
Bridging Model-Based Optimization and Generative Modeling via
  Conservative Fine-Tuning of Diffusion Models
Bridging Model-Based Optimization and Generative Modeling via Conservative Fine-Tuning of Diffusion Models
Masatoshi Uehara
Yulai Zhao
Ehsan Hajiramezanali
Gabriele Scalia
Gökçen Eraslan
Avantika Lal
Sergey Levine
Tommaso Biancalani
50
13
0
30 May 2024
Markovian Flow Matching: Accelerating MCMC with Continuous Normalizing
  Flows
Markovian Flow Matching: Accelerating MCMC with Continuous Normalizing Flows
A. Cabezas
Louis Sharrock
Christopher Nemeth
34
1
0
23 May 2024
Control, Transport and Sampling: Towards Better Loss Design
Control, Transport and Sampling: Towards Better Loss Design
Qijia Jiang
David Nabergoj
OT
38
0
0
22 May 2024
One-step data-driven generative model via Schrödinger Bridge
One-step data-driven generative model via Schrödinger Bridge
Hanwen Huang
DiffM
31
4
0
21 May 2024
Liouville Flow Importance Sampler
Liouville Flow Importance Sampler
Yifeng Tian
Nishant Panda
Yen Ting Lin
36
8
0
03 May 2024
Physics-Informed Diffusion Models
Physics-Informed Diffusion Models
Jan-Hendrik Bastek
WaiChing Sun
D. Kochmann
DiffM
AI4CE
47
11
0
21 Mar 2024
Probabilistic Forecasting with Stochastic Interpolants and Föllmer
  Processes
Probabilistic Forecasting with Stochastic Interpolants and Föllmer Processes
Yifan Chen
Mark Goldstein
Mengjian Hua
M. S. Albergo
Nicholas M. Boffi
Eric Vanden-Eijnden
AI4TS
33
16
0
20 Mar 2024
Soft-constrained Schrodinger Bridge: a Stochastic Control Approach
Soft-constrained Schrodinger Bridge: a Stochastic Control Approach
Jhanvi Garg
Xianyang Zhang
Quan Zhou
DiffM
OT
40
0
0
04 Mar 2024
Zeroth-Order Sampling Methods for Non-Log-Concave Distributions:
  Alleviating Metastability by Denoising Diffusion
Zeroth-Order Sampling Methods for Non-Log-Concave Distributions: Alleviating Metastability by Denoising Diffusion
Ye He
Kevin Rojas
Molei Tao
DiffM
38
8
0
27 Feb 2024
Fine-Tuning of Continuous-Time Diffusion Models as Entropy-Regularized
  Control
Fine-Tuning of Continuous-Time Diffusion Models as Entropy-Regularized Control
Masatoshi Uehara
Yulai Zhao
Kevin Black
Ehsan Hajiramezanali
Gabriele Scalia
N. Diamant
Alex Tseng
Tommaso Biancalani
Sergey Levine
42
42
0
23 Feb 2024
Symbolic Music Generation with Non-Differentiable Rule Guided Diffusion
Symbolic Music Generation with Non-Differentiable Rule Guided Diffusion
Yujia Huang
Adishree S. Ghatare
Yuanzhe Liu
Ziniu Hu
Qinsheng Zhang
Chandramouli Shama Sastry
Francesco Ferroni
Sageev Oore
Yisong Yue
DiffM
55
21
0
22 Feb 2024
Stochastic Localization via Iterative Posterior Sampling
Stochastic Localization via Iterative Posterior Sampling
Louis Grenioux
Maxence Noble
Marylou Gabrié
Alain Durmus
DiffM
43
12
0
16 Feb 2024
Target Score Matching
Target Score Matching
Valentin De Bortoli
M. Hutchinson
Peter Wirnsberger
Arnaud Doucet
DiffM
35
17
0
13 Feb 2024
Particle Denoising Diffusion Sampler
Particle Denoising Diffusion Sampler
Angus Phillips
Hai-Dang Dau
M. Hutchinson
Valentin De Bortoli
George Deligiannidis
Arnaud Doucet
DiffM
62
25
0
09 Feb 2024
Iterated Denoising Energy Matching for Sampling from Boltzmann Densities
Iterated Denoising Energy Matching for Sampling from Boltzmann Densities
Tara Akhound-Sadegh
Jarrid Rector-Brooks
A. Bose
Sarthak Mittal
Pablo Lemos
...
Siamak Ravanbakhsh
Gauthier Gidel
Yoshua Bengio
Nikolay Malkin
Alexander Tong
DiffM
37
41
0
09 Feb 2024
Improved off-policy training of diffusion samplers
Improved off-policy training of diffusion samplers
Marcin Sendera
Minsu Kim
Sarthak Mittal
Pablo Lemos
Luca Scimeca
Jarrid Rector-Brooks
Alexandre Adam
Yoshua Bengio
Nikolay Malkin
OffRL
66
17
0
07 Feb 2024
12
Next