Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2111.11303
Cited By
Machine Learning of Thermodynamic Observables in the Presence of Mode Collapse
22 November 2021
K. Nicoli
Christopher J. Anders
L. Funcke
T. Hartung
K. Jansen
Pan Kessel
Shinichi Nakajima
Paolo Stornati
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Machine Learning of Thermodynamic Observables in the Presence of Mode Collapse"
9 / 9 papers shown
Title
Simulating the Hubbard Model with Equivariant Normalizing Flows
Dominic Schuh
Janik Kreit
Evan Berkowitz
L. Funcke
Thomas Luu
K. Nicoli
Marcel Rodekamp
47
3
0
13 Jan 2025
AdvNF: Reducing Mode Collapse in Conditional Normalising Flows using Adversarial Learning
V. Kanaujia
Mathias S. Scheurer
Vipul Arora
GAN
DRL
32
2
0
29 Jan 2024
Applications of flow models to the generation of correlated lattice QCD ensembles
Ryan Abbott
Aleksandar Botev
D. Boyda
D. Hackett
G. Kanwar
S. Racanière
Danilo Jimenez Rezende
Fernando Romero-López
P. Shanahan
Julian M. Urban
AI4CE
198
11
0
19 Jan 2024
Multi-Lattice Sampling of Quantum Field Theories via Neural Operator-based Flows
Bálint Máté
Franccois Fleuret
AI4CE
34
0
0
01 Jan 2024
Detecting and Mitigating Mode-Collapse for Flow-based Sampling of Lattice Field Theories
K. Nicoli
Christopher J. Anders
T. Hartung
K. Jansen
Pan Kessel
Shinichi Nakajima
29
22
0
27 Feb 2023
On Sampling with Approximate Transport Maps
Louis Grenioux
Alain Durmus
Eric Moulines
Marylou Gabrié
OT
27
15
0
09 Feb 2023
Gradients should stay on Path: Better Estimators of the Reverse- and Forward KL Divergence for Normalizing Flows
Lorenz Vaitl
K. Nicoli
Shinichi Nakajima
Pan Kessel
61
24
0
17 Jul 2022
Learning Lattice Quantum Field Theories with Equivariant Continuous Flows
Mathis Gerdes
P. D. Haan
Corrado Rainone
Roberto Bondesan
Miranda C. N. Cheng
AI4CE
24
40
0
01 Jul 2022
Flow-based density of states for complex actions
J. Pawlowski
Julian M. Urban
16
10
0
02 Mar 2022
1