Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2111.10919
Cited By
Offline Reinforcement Learning: Fundamental Barriers for Value Function Approximation
21 November 2021
Dylan J. Foster
A. Krishnamurthy
D. Simchi-Levi
Yunzong Xu
OffRL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Offline Reinforcement Learning: Fundamental Barriers for Value Function Approximation"
49 / 49 papers shown
Title
On The Statistical Complexity of Offline Decision-Making
Thanh Nguyen-Tang
R. Arora
OffRL
43
1
0
10 Jan 2025
Primal-Dual Spectral Representation for Off-policy Evaluation
Yang Hu
Tianyi Chen
Na Li
Kai Wang
Bo Dai
OffRL
32
0
0
23 Oct 2024
The Central Role of the Loss Function in Reinforcement Learning
Kaiwen Wang
Nathan Kallus
Wen Sun
OffRL
59
7
0
19 Sep 2024
The Role of Inherent Bellman Error in Offline Reinforcement Learning with Linear Function Approximation
Noah Golowich
Ankur Moitra
OffRL
34
2
0
17 Jun 2024
Trajectory Data Suffices for Statistically Efficient Learning in Offline RL with Linear
q
π
q^π
q
π
-Realizability and Concentrability
Volodymyr Tkachuk
Gellert Weisz
Csaba Szepesvári
OffRL
30
0
0
27 May 2024
ArCHer: Training Language Model Agents via Hierarchical Multi-Turn RL
Yifei Zhou
Andrea Zanette
Jiayi Pan
Sergey Levine
Aviral Kumar
65
50
0
29 Feb 2024
Advancing Investment Frontiers: Industry-grade Deep Reinforcement Learning for Portfolio Optimization
Philip Ndikum
Serge Ndikum
52
1
0
27 Feb 2024
Mitigating Covariate Shift in Misspecified Regression with Applications to Reinforcement Learning
P. Amortila
Tongyi Cao
Akshay Krishnamurthy
OffRL
OOD
46
2
0
22 Jan 2024
Offline Data Enhanced On-Policy Policy Gradient with Provable Guarantees
Yifei Zhou
Ayush Sekhari
Yuda Song
Wen Sun
OffRL
OnRL
30
8
0
14 Nov 2023
On the Theory of Risk-Aware Agents: Bridging Actor-Critic and Economics
Michal Nauman
Marek Cygan
35
1
0
30 Oct 2023
Butterfly Effects of SGD Noise: Error Amplification in Behavior Cloning and Autoregression
Adam Block
Dylan J. Foster
Akshay Krishnamurthy
Max Simchowitz
Cyril Zhang
30
4
0
17 Oct 2023
When is Agnostic Reinforcement Learning Statistically Tractable?
Zeyu Jia
Gene Li
Alexander Rakhlin
Ayush Sekhari
Nathan Srebro
OffRL
27
5
0
09 Oct 2023
The Optimal Approximation Factors in Misspecified Off-Policy Value Function Estimation
P. Amortila
Nan Jiang
Csaba Szepesvári
OffRL
29
3
0
25 Jul 2023
Provable Benefits of Policy Learning from Human Preferences in Contextual Bandit Problems
Xiang Ji
Huazheng Wang
Minshuo Chen
Tuo Zhao
Mengdi Wang
OffRL
34
6
0
24 Jul 2023
Policy Finetuning in Reinforcement Learning via Design of Experiments using Offline Data
Ruiqi Zhang
Andrea Zanette
OffRL
OnRL
40
7
0
10 Jul 2023
Active Coverage for PAC Reinforcement Learning
Aymen Al Marjani
Andrea Tirinzoni
E. Kaufmann
OffRL
21
4
0
23 Jun 2023
Harnessing Mixed Offline Reinforcement Learning Datasets via Trajectory Weighting
Zhang-Wei Hong
Pulkit Agrawal
Rémi Tachet des Combes
Romain Laroche
OffRL
31
17
0
22 Jun 2023
A Primal-Dual-Critic Algorithm for Offline Constrained Reinforcement Learning
Kihyuk Hong
Yuhang Li
Ambuj Tewari
OffRL
18
7
0
13 Jun 2023
Unified Off-Policy Learning to Rank: a Reinforcement Learning Perspective
Zeyu Zhang
Yi-Hsun Su
Hui Yuan
Yiran Wu
R. Balasubramanian
Qingyun Wu
Huazheng Wang
Mengdi Wang
OffRL
CML
36
4
0
13 Jun 2023
Survival Instinct in Offline Reinforcement Learning
Anqi Li
Dipendra Kumar Misra
Andrey Kolobov
Ching-An Cheng
OffRL
22
16
0
05 Jun 2023
The Benefits of Being Distributional: Small-Loss Bounds for Reinforcement Learning
Kaiwen Wang
Kevin Zhou
Runzhe Wu
Nathan Kallus
Wen Sun
OffRL
31
17
0
25 May 2023
Offline Reinforcement Learning with Additional Covering Distributions
Chenjie Mao
OffRL
25
0
0
22 May 2023
Finetuning from Offline Reinforcement Learning: Challenges, Trade-offs and Practical Solutions
Yicheng Luo
Jackie Kay
Edward Grefenstette
M. Deisenroth
OffRL
OnRL
13
15
0
30 Mar 2023
VIPeR: Provably Efficient Algorithm for Offline RL with Neural Function Approximation
Thanh Nguyen-Tang
R. Arora
OffRL
46
5
0
24 Feb 2023
Minimax Instrumental Variable Regression and
L
2
L_2
L
2
Convergence Guarantees without Identification or Closedness
Andrew Bennett
Nathan Kallus
Xiaojie Mao
Whitney Newey
Vasilis Syrgkanis
Masatoshi Uehara
30
14
0
10 Feb 2023
Selective Uncertainty Propagation in Offline RL
Sanath Kumar Krishnamurthy
Shrey Modi
Tanmay Gangwani
S. Katariya
B. Kveton
A. Rangi
OffRL
61
0
0
01 Feb 2023
Offline Robot Reinforcement Learning with Uncertainty-Guided Human Expert Sampling
Ashish Kumar
Ilya Kuzovkin
OffRL
OnRL
34
1
0
16 Dec 2022
A Review of Off-Policy Evaluation in Reinforcement Learning
Masatoshi Uehara
C. Shi
Nathan Kallus
OffRL
36
47
0
13 Dec 2022
When is Realizability Sufficient for Off-Policy Reinforcement Learning?
Andrea Zanette
OffRL
16
14
0
10 Nov 2022
Oracle Inequalities for Model Selection in Offline Reinforcement Learning
Jonathan Lee
George Tucker
Ofir Nachum
Bo Dai
Emma Brunskill
OffRL
24
13
0
03 Nov 2022
Behavior Prior Representation learning for Offline Reinforcement Learning
Hongyu Zang
Xin Li
Jie Yu
Chen Liu
Riashat Islam
Rémi Tachet des Combes
Romain Laroche
OffRL
OnRL
35
10
0
02 Nov 2022
Optimal Conservative Offline RL with General Function Approximation via Augmented Lagrangian
Paria Rashidinejad
Hanlin Zhu
Kunhe Yang
Stuart J. Russell
Jiantao Jiao
OffRL
38
26
0
01 Nov 2022
Agent-Controller Representations: Principled Offline RL with Rich Exogenous Information
Riashat Islam
Manan Tomar
Alex Lamb
Yonathan Efroni
Hongyu Zang
...
Dipendra Kumar Misra
Xin-hui Li
H. V. Seijen
Rémi Tachet des Combes
John Langford
OffRL
24
6
0
31 Oct 2022
Hybrid RL: Using Both Offline and Online Data Can Make RL Efficient
Yuda Song
Yi Zhou
Ayush Sekhari
J. Andrew Bagnell
A. Krishnamurthy
Wen Sun
OffRL
OnRL
32
92
0
13 Oct 2022
Reliable Conditioning of Behavioral Cloning for Offline Reinforcement Learning
Tung Nguyen
Qinqing Zheng
Aditya Grover
OffRL
23
6
0
11 Oct 2022
The Role of Coverage in Online Reinforcement Learning
Tengyang Xie
Dylan J. Foster
Yu Bai
Nan Jiang
Sham Kakade
OffRL
32
57
0
09 Oct 2022
Offline Reinforcement Learning with Differentiable Function Approximation is Provably Efficient
Ming Yin
Mengdi Wang
Yu-Xiang Wang
OffRL
77
12
0
03 Oct 2022
Learning Bellman Complete Representations for Offline Policy Evaluation
Jonathan D. Chang
Kaiwen Wang
Nathan Kallus
Wen Sun
OffRL
29
14
0
12 Jul 2022
On the Statistical Efficiency of Reward-Free Exploration in Non-Linear RL
Jinglin Chen
Aditya Modi
A. Krishnamurthy
Nan Jiang
Alekh Agarwal
38
25
0
21 Jun 2022
Provably Efficient Offline Reinforcement Learning with Trajectory-Wise Reward
Tengyu Xu
Yue Wang
Shaofeng Zou
Yingbin Liang
OffRL
30
13
0
13 Jun 2022
Stabilizing Q-learning with Linear Architectures for Provably Efficient Learning
Andrea Zanette
Martin J. Wainwright
OOD
36
5
0
01 Jun 2022
Pessimism for Offline Linear Contextual Bandits using
ℓ
p
\ell_p
ℓ
p
Confidence Sets
Gen Li
Cong Ma
Nathan Srebro
OffRL
30
11
0
21 May 2022
Offline Reinforcement Learning Under Value and Density-Ratio Realizability: The Power of Gaps
Jinglin Chen
Nan Jiang
OffRL
21
33
0
25 Mar 2022
Bellman Residual Orthogonalization for Offline Reinforcement Learning
Andrea Zanette
Martin J. Wainwright
OffRL
27
8
0
24 Mar 2022
Near-optimal Offline Reinforcement Learning with Linear Representation: Leveraging Variance Information with Pessimism
Ming Yin
Yaqi Duan
Mengdi Wang
Yu-Xiang Wang
OffRL
34
65
0
11 Mar 2022
A Complete Characterization of Linear Estimators for Offline Policy Evaluation
Juan C. Perdomo
A. Krishnamurthy
Peter L. Bartlett
Sham Kakade
OffRL
27
3
0
08 Mar 2022
Offline Reinforcement Learning with Realizability and Single-policy Concentrability
Wenhao Zhan
Baihe Huang
Audrey Huang
Nan Jiang
Jason D. Lee
OffRL
34
104
0
09 Feb 2022
Provably Efficient Representation Selection in Low-rank Markov Decision Processes: From Online to Offline RL
Weitong Zhang
Jiafan He
Dongruo Zhou
Amy Zhang
Quanquan Gu
OffRL
22
11
0
22 Jun 2021
Goodness-of-fit Tests for high-dimensional Gaussian linear models
Nicolas Verzélen
Fanny Villers
103
34
0
14 Nov 2007
1