ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.07818
18
7

A Primal-Dual-Critic Algorithm for Offline Constrained Reinforcement Learning

13 June 2023
Kihyuk Hong
Yuhang Li
Ambuj Tewari
    OffRL
ArXivPDFHTML
Abstract

Offline constrained reinforcement learning (RL) aims to learn a policy that maximizes the expected cumulative reward subject to constraints on expected cumulative cost using an existing dataset. In this paper, we propose Primal-Dual-Critic Algorithm (PDCA), a novel algorithm for offline constrained RL with general function approximation. PDCA runs a primal-dual algorithm on the Lagrangian function estimated by critics. The primal player employs a no-regret policy optimization oracle to maximize the Lagrangian estimate and the dual player acts greedily to minimize the Lagrangian estimate. We show that PDCA can successfully find a near saddle point of the Lagrangian, which is nearly optimal for the constrained RL problem. Unlike previous work that requires concentrability and a strong Bellman completeness assumption, PDCA only requires concentrability and realizability assumptions for sample-efficient learning.

View on arXiv
Comments on this paper