Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2111.10734
Cited By
Deep Probability Estimation
21 November 2021
Sheng Liu
Aakash Kaku
Weicheng Zhu
M. Leibovich
S. Mohan
Boyang Yu
Haoxiang Huang
L. Zanna
N. Razavian
Jonathan Niles-Weed
C. Fernandez‐Granda
UQCV
OOD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Probability Estimation"
31 / 31 papers shown
Title
Automated radiotherapy treatment planning guided by GPT-4Vision
Sheng Liu
O. Pastor-Serrano
Yizheng Chen
Matthew Gopaulchan
Weixing Liang
...
Michael Gensheimer
P. Dong
Yong Yang
James Zou
Lei Xing
66
6
0
21 Jun 2024
Revisiting the Calibration of Modern Neural Networks
Matthias Minderer
Josip Djolonga
Rob Romijnders
F. Hubis
Xiaohua Zhai
N. Houlsby
Dustin Tran
Mario Lucic
UQCV
91
363
0
15 Jun 2021
Skillful Precipitation Nowcasting using Deep Generative Models of Radar
Suman V. Ravuri
Karel Lenc
Matthew Willson
D. Kangin
Rémi R. Lam
...
R. Hadsell
Nial H. Robinson
Ellen Clancy
A. Arribas
S. Mohamed
AI4Cl
117
727
0
02 Apr 2021
X-CAL: Explicit Calibration for Survival Analysis
Mark Goldstein
Xintian Han
A. Puli
A. Perotte
Rajesh Ranganath
240
37
0
13 Jan 2021
Right Decisions from Wrong Predictions: A Mechanism Design Alternative to Individual Calibration
Shengjia Zhao
Stefano Ermon
25
8
0
15 Nov 2020
Improved Trainable Calibration Method for Neural Networks on Medical Imaging Classification
G. Liang
Yu Zhang
Xiaoqin Wang
Nathan Jacobs
UQCV
39
61
0
09 Sep 2020
Early-Learning Regularization Prevents Memorization of Noisy Labels
Sheng Liu
Jonathan Niles-Weed
N. Razavian
C. Fernandez‐Granda
NoLa
72
561
0
30 Jun 2020
Calibration of Neural Networks using Splines
Kartik Gupta
Amir M. Rahimi
Thalaiyasingam Ajanthan
Thomas Mensink
C. Sminchisescu
Leonid Sigal
51
106
0
23 Jun 2020
Mix-n-Match: Ensemble and Compositional Methods for Uncertainty Calibration in Deep Learning
Jize Zhang
B. Kailkhura
T. Y. Han
UQCV
64
222
0
16 Mar 2020
Improved Baselines with Momentum Contrastive Learning
Xinlei Chen
Haoqi Fan
Ross B. Girshick
Kaiming He
SSL
423
3,397
0
09 Mar 2020
Calibrating Deep Neural Networks using Focal Loss
Jishnu Mukhoti
Viveka Kulharia
Amartya Sanyal
Stuart Golodetz
Philip Torr
P. Dokania
UQCV
76
454
0
21 Feb 2020
Deep learning-based survival prediction for multiple cancer types using histopathology images
Ellery Wulczyn
David F. Steiner
Zhaoyang Xu
Apaar Sadhwani
Hongwu Wang
I. Flament
C. Mermel
Po-Hsuan Cameron Chen
Yun-Hui Liu
Martin C. Stumpe
25
213
0
16 Dec 2019
Machine Learning for Precipitation Nowcasting from Radar Images
Shreya Agrawal
Luke Barrington
Carla Bromberg
J. Burge
Cenk Gazen
Jason Hickey
AI4Cl
46
223
0
11 Dec 2019
Beyond temperature scaling: Obtaining well-calibrated multiclass probabilities with Dirichlet calibration
Meelis Kull
Miquel Perelló Nieto
Markus Kängsepp
Telmo de Menezes e Silva Filho
Hao Song
Peter A. Flach
UQCV
60
378
0
28 Oct 2019
Aleatoric and Epistemic Uncertainty in Machine Learning: An Introduction to Concepts and Methods
Eyke Hüllermeier
Willem Waegeman
PER
UD
163
1,388
0
21 Oct 2019
Sampling-free Epistemic Uncertainty Estimation Using Approximated Variance Propagation
Janis Postels
Francesco Ferroni
Huseyin Coskun
Nassir Navab
Federico Tombari
UQCV
UD
PER
BDL
106
139
0
01 Aug 2019
On Mixup Training: Improved Calibration and Predictive Uncertainty for Deep Neural Networks
S. Thulasidasan
Gopinath Chennupati
J. Bilmes
Tanmoy Bhattacharya
S. Michalak
UQCV
62
535
0
27 May 2019
A Simple Baseline for Bayesian Uncertainty in Deep Learning
Wesley J. Maddox
T. Garipov
Pavel Izmailov
Dmitry Vetrov
A. Wilson
BDL
UQCV
74
804
0
07 Feb 2019
Accurate Uncertainties for Deep Learning Using Calibrated Regression
Volodymyr Kuleshov
Nathan Fenner
Stefano Ermon
BDL
UQCV
142
626
0
01 Jul 2018
The phase transition for the existence of the maximum likelihood estimate in high-dimensional logistic regression
Emmanuel J. Candes
Pragya Sur
34
140
0
25 Apr 2018
Attention-based Deep Multiple Instance Learning
Maximilian Ilse
Jakub M. Tomczak
Max Welling
118
1,790
0
13 Feb 2018
The Implicit Bias of Gradient Descent on Separable Data
Daniel Soudry
Elad Hoffer
Mor Shpigel Nacson
Suriya Gunasekar
Nathan Srebro
74
908
0
27 Oct 2017
mixup: Beyond Empirical Risk Minimization
Hongyi Zhang
Moustapha Cissé
Yann N. Dauphin
David Lopez-Paz
NoLa
243
9,687
0
25 Oct 2017
On Calibration of Modern Neural Networks
Chuan Guo
Geoff Pleiss
Yu Sun
Kilian Q. Weinberger
UQCV
199
5,774
0
14 Jun 2017
Age Progression/Regression by Conditional Adversarial Autoencoder
Zhifei Zhang
Yang Song
Hairong Qi
GAN
CVBM
31
1,109
0
27 Feb 2017
Regularizing Neural Networks by Penalizing Confident Output Distributions
Gabriel Pereyra
George Tucker
J. Chorowski
Lukasz Kaiser
Geoffrey E. Hinton
NoLa
114
1,133
0
23 Jan 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
493
5,748
0
05 Dec 2016
Understanding deep learning requires rethinking generalization
Chiyuan Zhang
Samy Bengio
Moritz Hardt
Benjamin Recht
Oriol Vinyals
HAI
269
4,620
0
10 Nov 2016
Natural-Parameter Networks: A Class of Probabilistic Neural Networks
Hao Wang
Xingjian Shi
Dit-Yan Yeung
BDL
51
83
0
02 Nov 2016
Rethinking the Inception Architecture for Computer Vision
Christian Szegedy
Vincent Vanhoucke
Sergey Ioffe
Jonathon Shlens
Z. Wojna
3DV
BDL
497
27,231
0
02 Dec 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
476
9,233
0
06 Jun 2015
1