Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2111.09450
Cited By
See Eye to Eye: A Lidar-Agnostic 3D Detection Framework for Unsupervised Multi-Target Domain Adaptation
17 November 2021
Darren Tsai
J. S. Berrio
Mao Shan
Stewart Worrall
E. Nebot
3DPC
Re-assign community
ArXiv
PDF
HTML
Papers citing
"See Eye to Eye: A Lidar-Agnostic 3D Detection Framework for Unsupervised Multi-Target Domain Adaptation"
8 / 8 papers shown
Title
Robust Unsupervised Domain Adaptation for 3D Point Cloud Segmentation Under Source Adversarial Attacks
Yiming Li
Junjie Chen
Yuecong Xu
Kemi Ding
3DPC
42
0
0
02 Apr 2025
Syn-to-Real Unsupervised Domain Adaptation for Indoor 3D Object Detection
Yunsong Wang
Na Zhao
Gim Hee Lee
3DPC
40
1
0
17 Jun 2024
LiDAR Meta Depth Completion
Wolfgang Boettcher
Lukas Hoyer
Ozan Unal
Ke Li
Dengxin Dai
25
1
0
24 Jul 2023
MS3D: Leveraging Multiple Detectors for Unsupervised Domain Adaptation in 3D Object Detection
Darren Tsai
J. S. Berrio
Mao Shan
E. Nebot
Stewart Worrall
3DPC
40
10
0
05 Apr 2023
Quantifying the LiDAR Sim-to-Real Domain Shift: A Detailed Investigation Using Object Detectors and Analyzing Point Clouds at Target-Level
Sebastian Huch
Luca Scalerandi
Esteban Rivera
Markus Lienkamp
3DPC
21
16
0
03 Mar 2023
Voxel R-CNN: Towards High Performance Voxel-based 3D Object Detection
Jiajun Deng
Shaoshuai Shi
Pei-Cian Li
Wen-gang Zhou
Yanyong Zhang
Houqiang Li
3DPC
231
660
0
31 Dec 2020
Domain Adaptation in LiDAR Semantic Segmentation by Aligning Class Distributions
Inigo Alonso
L. Riazuelo
Luis Montesano
Ana C. Murillo
3DPC
OOD
56
29
0
23 Oct 2020
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
C. Qi
Hao Su
Kaichun Mo
Leonidas J. Guibas
3DH
3DPC
3DV
PINN
222
14,103
0
02 Dec 2016
1