ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.08857
  4. Cited By
SEIHAI: A Sample-efficient Hierarchical AI for the MineRL Competition

SEIHAI: A Sample-efficient Hierarchical AI for the MineRL Competition

17 November 2021
Hangyu Mao
Chao Wang
Xiaotian Hao
Yihuan Mao
Yiming Lu
Chengjie Wu
Jianye Hao
Dong Li
Pingzhong Tang
ArXivPDFHTML

Papers citing "SEIHAI: A Sample-efficient Hierarchical AI for the MineRL Competition"

3 / 3 papers shown
Title
Describe, Explain, Plan and Select: Interactive Planning with Large
  Language Models Enables Open-World Multi-Task Agents
Describe, Explain, Plan and Select: Interactive Planning with Large Language Models Enables Open-World Multi-Task Agents
Zihao Wang
Shaofei Cai
Guanzhou Chen
Guy Van den Broeck
Xiaojian Ma
Yitao Liang
LM&Ro
LLMAG
60
318
0
03 Feb 2023
PTDE: Personalized Training with Distilled Execution for Multi-Agent
  Reinforcement Learning
PTDE: Personalized Training with Distilled Execution for Multi-Agent Reinforcement Learning
Yiqun Chen
Hangyu Mao
Jiaxin Mao
Shiguang Wu
Tianle Zhang
Bin Zhang
Bin Wang
Hong Chang
OffRL
41
7
0
17 Oct 2022
JueWu-MC: Playing Minecraft with Sample-efficient Hierarchical
  Reinforcement Learning
JueWu-MC: Playing Minecraft with Sample-efficient Hierarchical Reinforcement Learning
Zichuan Lin
Junyou Li
Jianing Shi
Deheng Ye
Qiang Fu
Wei Yang
BDL
45
34
0
07 Dec 2021
1