ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.06417
  4. Cited By
Online-compatible Unsupervised Non-resonant Anomaly Detection

Online-compatible Unsupervised Non-resonant Anomaly Detection

11 November 2021
Vinicius Mikuni
Benjamin Nachman
David Shih
ArXivPDFHTML

Papers citing "Online-compatible Unsupervised Non-resonant Anomaly Detection"

8 / 8 papers shown
Title
Anomalies, Representations, and Self-Supervision
Anomalies, Representations, and Self-Supervision
B. Dillon
Luigi Favaro
Friedrich Feiden
Tanmoy Modak
Tilman Plehn
21
9
0
11 Jan 2023
Machine-Learned Exclusion Limits without Binning
Machine-Learned Exclusion Limits without Binning
E. Arganda
Andrés D. Pérez
M. D. L. Rios
Rosa María Sandá Seoane
30
9
0
09 Nov 2022
Physics Community Needs, Tools, and Resources for Machine Learning
Physics Community Needs, Tools, and Resources for Machine Learning
Philip C. Harris
E. Katsavounidis
W. McCormack
D. Rankin
Yongbin Feng
...
De-huai Chen
Mark S. Neubauer
Javier Mauricio Duarte
G. Karagiorgi
Miaoyuan Liu
AI4CE
17
3
0
30 Mar 2022
Machine Learning in the Search for New Fundamental Physics
Machine Learning in the Search for New Fundamental Physics
G. Karagiorgi
Gregor Kasieczka
S. Kravitz
Benjamin Nachman
David Shih
AI4CE
36
113
0
07 Dec 2021
An Exploration of Learnt Representations of W Jets
An Exploration of Learnt Representations of W Jets
J. Collins
DRL
26
12
0
22 Sep 2021
Topological Obstructions to Autoencoding
Topological Obstructions to Autoencoding
Joshua D. Batson
C. G. Haaf
Yonatan Kahn
Daniel A. Roberts
AI4CE
34
37
0
16 Feb 2021
Fast inference of deep neural networks in FPGAs for particle physics
Fast inference of deep neural networks in FPGAs for particle physics
Javier Mauricio Duarte
Song Han
Philip C. Harris
S. Jindariani
E. Kreinar
...
J. Ngadiuba
M. Pierini
R. Rivera
N. Tran
Zhenbin Wu
AI4CE
75
386
0
16 Apr 2018
Measuring and testing dependence by correlation of distances
Measuring and testing dependence by correlation of distances
G. Székely
Maria L. Rizzo
N. K. Bakirov
177
2,577
0
28 Mar 2008
1