Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2111.06283
Cited By
DropGNN: Random Dropouts Increase the Expressiveness of Graph Neural Networks
11 November 2021
Pál András Papp
Karolis Martinkus
Lukas Faber
Roger Wattenhofer
GNN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"DropGNN: Random Dropouts Increase the Expressiveness of Graph Neural Networks"
48 / 98 papers shown
Title
Provably Powerful Graph Neural Networks for Directed Multigraphs
Béni Egressy
Luc von Niederhäusern
Jovan Blanusa
Erik Altman
Roger Wattenhofer
Kubilay Atasu
25
15
0
20 Jun 2023
Path Neural Networks: Expressive and Accurate Graph Neural Networks
Gaspard Michel
Giannis Nikolentzos
J. Lutzeyer
Michalis Vazirgiannis
GNN
18
26
0
09 Jun 2023
BeMap: Balanced Message Passing for Fair Graph Neural Network
Xiao Lin
Jian Kang
Weilin Cong
Hanghang Tong
MoE
37
6
0
07 Jun 2023
Extending the Design Space of Graph Neural Networks by Rethinking Folklore Weisfeiler-Lehman
Jiarui Feng
Lecheng Kong
Hao Liu
Dacheng Tao
Fuhai Li
Muhan Zhang
Yixin Chen
44
10
0
05 Jun 2023
Union Subgraph Neural Networks
Jiaxing Xu
Aihu Zhang
Qingtian Bian
Vijay Prakash Dwivedi
Yiping Ke
GNN
27
6
0
25 May 2023
Robust Ante-hoc Graph Explainer using Bilevel Optimization
Kha-Dinh Luong
Mert Kosan
A. Silva
Ambuj K. Singh
34
6
0
25 May 2023
DRew: Dynamically Rewired Message Passing with Delay
Benjamin Gutteridge
Xiaowen Dong
Michael M. Bronstein
Francesco Di Giovanni
36
58
0
13 May 2023
What Do GNNs Actually Learn? Towards Understanding their Representations
Giannis Nikolentzos
Michail Chatzianastasis
Michalis Vazirgiannis
GNN
AI4CE
13
0
0
21 Apr 2023
An Empirical Study of Realized GNN Expressiveness
Yanbo Wang
Muhan Zhang
42
10
0
16 Apr 2023
Counterfactual Learning on Graphs: A Survey
Zhimeng Guo
Teng Xiao
Zongyu Wu
Charu C. Aggarwal
Hui Liu
Suhang Wang
CML
AI4CE
40
19
0
03 Apr 2023
An Efficient Subgraph GNN with Provable Substructure Counting Power
Zuoyu Yan
Junru Zhou
Liangcai Gao
Zhi Tang
Muhan Zhang
GNN
29
12
0
19 Mar 2023
NESS: Node Embeddings from Static SubGraphs
Talip Uçar
23
1
0
15 Mar 2023
MulGT: Multi-task Graph-Transformer with Task-aware Knowledge Injection and Domain Knowledge-driven Pooling for Whole Slide Image Analysis
Weiqin Zhao
Shujun Wang
Maximus C. F. Yeung
Tianye Niu
Lequan Yu
44
9
0
21 Feb 2023
WL meet VC
Christopher Morris
Floris Geerts
Jan Tonshoff
Martin Grohe
38
27
0
26 Jan 2023
Boosting the Cycle Counting Power of Graph Neural Networks with I
2
^2
2
-GNNs
Yinan Huang
Xingang Peng
Jianzhu Ma
Muhan Zhang
84
47
0
22 Oct 2022
Towards Accurate Subgraph Similarity Computation via Neural Graph Pruning
Linfeng Liu
Xuhong Han
Dawei Zhou
Liping Liu
35
5
0
19 Oct 2022
On the Effectiveness of Hybrid Pooling in Mixup-Based Graph Learning for Language Processing
Zeming Dong
Qiang Hu
Zhenya Zhang
Yuejun Guo
Maxime Cordy
Mike Papadakis
Yves Le Traon
Jianjun Zhao
29
3
0
06 Oct 2022
Graph Classification via Discriminative Edge Feature Learning
Yang Yi
Xuequan Lu
Shang Gao
A. Robles-Kelly
Yuejie Zhang
GNN
34
7
0
05 Oct 2022
Hierarchical Graph Pooling is an Effective Citywide Traffic Condition Prediction Model
Shilin Pu
Liang Chu
Zhuoran Hou
Jincheng Hu
Yanjun Huang
Yuanjian Zhang
219
0
0
08 Sep 2022
A Class-Aware Representation Refinement Framework for Graph Classification
Jiaxing Xu
Jinjie Ni
Yiping Ke
GNN
29
4
0
02 Sep 2022
Oversquashing in GNNs through the lens of information contraction and graph expansion
P. Banerjee
Kedar Karhadkar
Yu Guang Wang
Uri Alon
Guido Montúfar
21
44
0
06 Aug 2022
A Topological characterisation of Weisfeiler-Leman equivalence classes
Jacob Bamberger
GNN
19
3
0
23 Jun 2022
Ordered Subgraph Aggregation Networks
Chao Qian
Gaurav Rattan
Floris Geerts
Christopher Morris
Mathias Niepert
41
57
0
22 Jun 2022
Understanding and Extending Subgraph GNNs by Rethinking Their Symmetries
Fabrizio Frasca
Beatrice Bevilacqua
Michael M. Bronstein
Haggai Maron
37
125
0
22 Jun 2022
Agent-based Graph Neural Networks
Karolis Martinkus
Pál András Papp
Benedikt Schesch
Roger Wattenhofer
LLMAG
GNN
29
17
0
22 Jun 2022
DiffWire: Inductive Graph Rewiring via the Lovász Bound
Adrián Arnaiz-Rodríguez
Ahmed Begga
Francisco Escolano
Nuria Oliver
29
62
0
15 Jun 2022
Universally Expressive Communication in Multi-Agent Reinforcement Learning
Matthew Morris
Thomas D. Barrett
Arnu Pretorius
24
4
0
14 Jun 2022
Fundamental Limits in Formal Verification of Message-Passing Neural Networks
Marco Salzer
M. Lange
GNN
11
10
0
10 Jun 2022
Empowering GNNs via Edge-Aware Weisfeiler-Leman Algorithm
Meng Liu
Haiyang Yu
Shuiwang Ji
33
1
0
04 Jun 2022
Graph Neural Networks with Precomputed Node Features
Béni Egressy
Roger Wattenhofer
17
2
0
01 Jun 2022
Template based Graph Neural Network with Optimal Transport Distances
Cédric Vincent-Cuaz
Rémi Flamary
Marco Corneli
Titouan Vayer
Nicolas Courty
OT
43
20
0
31 May 2022
Asynchronous Neural Networks for Learning in Graphs
Lukas Faber
Roger Wattenhofer
GNN
14
3
0
24 May 2022
A Survey of Trustworthy Graph Learning: Reliability, Explainability, and Privacy Protection
Bingzhe Wu
Jintang Li
Junchi Yu
Yatao Bian
Hengtong Zhang
...
Guangyu Sun
Peng Cui
Zibin Zheng
Zhe Liu
P. Zhao
OOD
37
25
0
20 May 2022
Unified GCNs: Towards Connecting GCNs with CNNs
Ziyan Zhang
Bo Jiang
Bin Luo
GNN
25
1
0
26 Apr 2022
DropMessage: Unifying Random Dropping for Graph Neural Networks
Taoran Fang
Zhiqing Xiao
Chunping Wang
Jiarong Xu
Xuan Yang
Yang Yang
16
46
0
21 Apr 2022
Graph Pooling for Graph Neural Networks: Progress, Challenges, and Opportunities
Chuang Liu
Yibing Zhan
Jia Wu
Chang Li
Bo Du
Wenbin Hu
Tongliang Liu
Dacheng Tao
GNN
AI4CE
30
80
0
15 Apr 2022
A Survey on Graph Representation Learning Methods
Shima Khoshraftar
A. An
GNN
AI4TS
27
108
0
04 Apr 2022
SPECTRE: Spectral Conditioning Helps to Overcome the Expressivity Limits of One-shot Graph Generators
Karolis Martinkus
Andreas Loukas
Nathanael Perraudin
Roger Wattenhofer
36
67
0
04 Apr 2022
SpeqNets: Sparsity-aware Permutation-equivariant Graph Networks
Christopher Morris
Gaurav Rattan
Sandra Kiefer
Siamak Ravanbakhsh
50
40
0
25 Mar 2022
Sign and Basis Invariant Networks for Spectral Graph Representation Learning
Derek Lim
Joshua Robinson
Lingxiao Zhao
Tess E. Smidt
S. Sra
Haggai Maron
Stefanie Jegelka
49
141
0
25 Feb 2022
Message passing all the way up
Petar Velickovic
111
63
0
22 Feb 2022
1-WL Expressiveness Is (Almost) All You Need
Markus Zopf
19
11
0
21 Feb 2022
Recent Advances in Reliable Deep Graph Learning: Inherent Noise, Distribution Shift, and Adversarial Attack
Jintang Li
Bingzhe Wu
Chengbin Hou
Guoji Fu
Yatao Bian
Liang Chen
Junzhou Huang
Zibin Zheng
OOD
AAML
32
6
0
15 Feb 2022
A Theoretical Comparison of Graph Neural Network Extensions
Pál András Papp
Roger Wattenhofer
100
46
0
30 Jan 2022
Towards Quantum Graph Neural Networks: An Ego-Graph Learning Approach
Xing Ai
Zhihong Zhang
Luzhe Sun
Junchi Yan
Edwin R. Hancock
GNN
39
11
0
13 Jan 2022
Weisfeiler and Leman go Machine Learning: The Story so far
Christopher Morris
Y. Lipman
Haggai Maron
Bastian Alexander Rieck
Nils M. Kriege
Martin Grohe
Matthias Fey
Karsten M. Borgwardt
GNN
43
111
0
18 Dec 2021
Representation Learning on Graphs with Jumping Knowledge Networks
Keyulu Xu
Chengtao Li
Yonglong Tian
Tomohiro Sonobe
Ken-ichi Kawarabayashi
Stefanie Jegelka
GNN
267
1,945
0
09 Jun 2018
MoleculeNet: A Benchmark for Molecular Machine Learning
Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
C. Geniesse
Aneesh S. Pappu
K. Leswing
Vijay S. Pande
OOD
175
1,778
0
02 Mar 2017
Previous
1
2