ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.05158
31
11

Towards Quantum Graph Neural Networks: An Ego-Graph Learning Approach

13 January 2022
Xing Ai
Zhihong Zhang
Luzhe Sun
Junchi Yan
Edwin R. Hancock
    GNN
ArXivPDFHTML
Abstract

Quantum machine learning is a fast-emerging field that aims to tackle machine learning using quantum algorithms and quantum computing. Due to the lack of physical qubits and an effective means to map real-world data from Euclidean space to Hilbert space, most of these methods focus on quantum analogies or process simulations rather than devising concrete architectures based on qubits. In this paper, we propose a novel hybrid quantum-classical algorithm for graph-structured data, which we refer to as the Ego-graph based Quantum Graph Neural Network (egoQGNN). egoQGNN implements the GNN theoretical framework using the tensor product and unity matrix representation, which greatly reduces the number of model parameters required. When controlled by a classical computer, egoQGNN can accommodate arbitrarily sized graphs by processing ego-graphs from the input graph using a modestly-sized quantum device. The architecture is based on a novel mapping from real-world data to Hilbert space. This mapping maintains the distance relations present in the data and reduces information loss. Experimental results show that the proposed method outperforms competitive state-of-the-art models with only 1.68\% parameters compared to those models.

View on arXiv
Comments on this paper