Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2111.05803
Cited By
Gradients are Not All You Need
10 November 2021
Luke Metz
C. Freeman
S. Schoenholz
Tal Kachman
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Gradients are Not All You Need"
50 / 69 papers shown
Title
Accelerating Visual-Policy Learning through Parallel Differentiable Simulation
Haoxiang You
Yilang Liu
Ian Abraham
24
0
0
15 May 2025
Locally Orderless Images for Optimization in Differentiable Rendering
Ishit Mehta
Manmohan Chandraker
Ravi Ramamoorthi
43
0
0
27 Mar 2025
Gradient Networks
Shreyas Chaudhari
Srinivasa Pranav
J. M. F. Moura
63
0
0
28 Jan 2025
Safe Reinforcement Learning using Finite-Horizon Gradient-based Estimation
Juntao Dai
Yaodong Yang
Qian Zheng
Gang Pan
OffRL
89
2
0
15 Dec 2024
Multilingual Topic Classification in X: Dataset and Analysis
Dimosthenis Antypas
Asahi Ushio
Francesco Barbieri
Jose Camacho-Collados
34
1
0
04 Oct 2024
Autonomous Vehicle Controllers From End-to-End Differentiable Simulation
Asen Nachkov
Danda Pani Paudel
Luc Van Gool
36
0
0
12 Sep 2024
chemtrain: Learning Deep Potential Models via Automatic Differentiation and Statistical Physics
Paul Fuchs
Stephan Thaler
Sebastien Röcken
Julija Zavadlav
DiffM
87
6
0
28 Aug 2024
Narrowing the Focus: Learned Optimizers for Pretrained Models
Gus Kristiansen
Mark Sandler
A. Zhmoginov
Nolan Miller
Anirudh Goyal
Jihwan Lee
Max Vladymyrov
41
1
0
17 Aug 2024
Joint-perturbation simultaneous pseudo-gradient
Carlos Martin
Tuomas Sandholm
41
2
0
17 Aug 2024
Back to Newton's Laws: Learning Vision-based Agile Flight via Differentiable Physics
Yuang Zhang
Yu Hu
Yunlong Song
Danping Zou
Weiyao Lin
43
17
0
15 Jul 2024
Behaviour Distillation
Andrei Lupu
Chris Xiaoxuan Lu
Jarek Liesen
R. T. Lange
Jakob Foerster
DD
54
4
0
21 Jun 2024
AlphaZeroES: Direct score maximization outperforms planning loss minimization
Carlos Martin
Tuomas Sandholm
28
0
0
12 Jun 2024
From Variance to Veracity: Unbundling and Mitigating Gradient Variance in Differentiable Bundle Adjustment Layers
Swaminathan Gurumurthy
Karnik Ram
Bingqing Chen
Zachary Manchester
Zico Kolter
52
1
0
12 Jun 2024
Mollification Effects of Policy Gradient Methods
Tao Wang
Sylvia Herbert
Sicun Gao
54
0
0
28 May 2024
Stabilizing Backpropagation Through Time to Learn Complex Physics
Patrick Schnell
Nils Thuerey
40
2
0
03 May 2024
SkelFormer: Markerless 3D Pose and Shape Estimation using Skeletal Transformers
Vandad Davoodnia
Saeed Ghorbani
Alexandre Messier
Ali Etemad
38
1
0
19 Apr 2024
ClimODE: Climate and Weather Forecasting with Physics-informed Neural ODEs
Yogesh Verma
Markus Heinonen
Vikas K. Garg
AI4CE
33
27
0
15 Apr 2024
Learning Quadruped Locomotion Using Differentiable Simulation
Yunlong Song
Sangbae Kim
Davide Scaramuzza
45
11
0
21 Mar 2024
Discovering Temporally-Aware Reinforcement Learning Algorithms
Matthew Jackson
Chris Xiaoxuan Lu
Louis Kirsch
R. T. Lange
Shimon Whiteson
Jakob N. Foerster
29
18
0
08 Feb 2024
Do Transformer World Models Give Better Policy Gradients?
Michel Ma
Tianwei Ni
Clement Gehring
P. DÓro
Pierre-Luc Bacon
47
4
0
07 Feb 2024
Gradient Informed Proximal Policy Optimization
Sanghyun Son
L. Zheng
Ryan Sullivan
Yi-Ling Qiao
Ming-Chyuan Lin
37
7
0
14 Dec 2023
Differentiable Visual Computing for Inverse Problems and Machine Learning
Andrew Spielberg
Fangcheng Zhong
Konstantinos Rematas
Krishna Murthy Jatavallabhula
Cengiz Öztireli
Tzu-Mao Li
Derek Nowrouzezahrai
56
7
0
21 Nov 2023
Using Cooperative Game Theory to Prune Neural Networks
M. Diaz-Ortiz
Benjamin Kempinski
Daphne Cornelisse
Yoram Bachrach
Tal Kachman
46
2
0
17 Nov 2023
NeuroEvoBench: Benchmarking Evolutionary Optimizers for Deep Learning Applications
Robert Tjarko Lange
Yujin Tang
Yingtao Tian
ELM
42
3
0
04 Nov 2023
Model-Based Reparameterization Policy Gradient Methods: Theory and Practical Algorithms
Shenao Zhang
Boyi Liu
Zhaoran Wang
Tuo Zhao
40
2
0
30 Oct 2023
Fractal Landscapes in Policy Optimization
Tao Wang
Sylvia Herbert
Sicun Gao
34
5
0
24 Oct 2023
Stabilizing RNN Gradients through Pre-training
Luca Herranz-Celotti
Jean Rouat
32
0
0
23 Aug 2023
Zero Grads: Learning Local Surrogate Losses for Non-Differentiable Graphics
Michael Fischer
Tobias Ritschel
29
2
0
10 Aug 2023
Enabling Efficient, Reliable Real-World Reinforcement Learning with Approximate Physics-Based Models
T. Westenbroek
Jacob Levy
David Fridovich-Keil
38
0
0
16 Jul 2023
Effective Latent Differential Equation Models via Attention and Multiple Shooting
German Abrevaya
Mahta Ramezanian-Panahi
Jean-Christophe Gagnon-Audet
Pablo Polosecki
Irina Rish
S. Dawson
Guillermo Cecchi
G. Dumas
MedIm
26
1
0
11 Jul 2023
Learning Space-Time Continuous Neural PDEs from Partially Observed States
V. Iakovlev
Markus Heinonen
Harri Lähdesmäki
32
1
0
09 Jul 2023
Addressing Discontinuous Root-Finding for Subsequent Differentiability in Machine Learning, Inverse Problems, and Control
Dan Johnson
Ronald Fedkiw
AI4CE
36
2
0
21 Jun 2023
HUB: Guiding Learned Optimizers with Continuous Prompt Tuning
Gaole Dai
Wei Wu
Ziyu Wang
Jie Fu
Shanghang Zhang
Tiejun Huang
AIFin
20
0
0
26 May 2023
Low-Variance Gradient Estimation in Unrolled Computation Graphs with ES-Single
Paul Vicol
Zico Kolter
Kevin Swersky
24
6
0
21 Apr 2023
Variance-Reduced Gradient Estimation via Noise-Reuse in Online Evolution Strategies
Oscar Li
James Harrison
Jascha Narain Sohl-Dickstein
Virginia Smith
Luke Metz
56
5
0
21 Apr 2023
Byzantine-Resilient Learning Beyond Gradients: Distributing Evolutionary Search
Andrei Kucharavy
M. Monti
R. Guerraoui
Ljiljana Dolamic
40
1
0
20 Apr 2023
Inductive biases in deep learning models for weather prediction
Jannik Thümmel
Matthias Karlbauer
S. Otte
C. Zarfl
Georg Martius
...
Thomas Scholten
Ulrich Friedrich
V. Wulfmeyer
B. Goswami
Martin Volker Butz
AI4CE
51
6
0
06 Apr 2023
Arbitrary Order Meta-Learning with Simple Population-Based Evolution
Chris Xiaoxuan Lu
Sebastian Towers
Jakob N. Foerster
33
5
0
16 Mar 2023
Structured State Space Models for In-Context Reinforcement Learning
Chris Xiaoxuan Lu
Yannick Schroecker
Albert Gu
Emilio Parisotto
Jakob N. Foerster
Satinder Singh
Feryal M. P. Behbahani
AI4TS
102
84
0
07 Mar 2023
ApproxED: Approximate exploitability descent via learned best responses
Carlos Martin
T. Sandholm
34
0
0
20 Jan 2023
A Survey of Meta-Reinforcement Learning
Jacob Beck
Risto Vuorio
E. Liu
Zheng Xiong
L. Zintgraf
Chelsea Finn
Shimon Whiteson
OOD
OffRL
42
124
0
19 Jan 2023
Human-Timescale Adaptation in an Open-Ended Task Space
Adaptive Agent Team
Jakob Bauer
Kate Baumli
Satinder Baveja
Feryal M. P. Behbahani
...
Jakub Sygnowski
K. Tuyls
Sarah York
Alexander Zacherl
Lei Zhang
LM&Ro
OffRL
AI4CE
LRM
40
110
0
18 Jan 2023
Differentiable Simulations for Enhanced Sampling of Rare Events
Martin Sípka
Johannes C. B. Dietschreit
Lukáš Grajciar
Rafael Gómez-Bombarelli
19
11
0
09 Jan 2023
evosax: JAX-based Evolution Strategies
R. T. Lange
40
54
0
08 Dec 2022
Transformer-Based Learned Optimization
Erik Gartner
Luke Metz
Mykhaylo Andriluka
C. Freeman
C. Sminchisescu
33
11
0
02 Dec 2022
Plateau-reduced Differentiable Path Tracing
Michael Fischer
Tobias Ritschel
26
9
0
30 Nov 2022
A survey of deep learning optimizers -- first and second order methods
Rohan Kashyap
ODL
47
6
0
28 Nov 2022
Discovering Evolution Strategies via Meta-Black-Box Optimization
R. T. Lange
Tom Schaul
Yutian Chen
Tom Zahavy
Valenti Dallibard
Chris Xiaoxuan Lu
Satinder Singh
Sebastian Flennerhag
49
47
0
21 Nov 2022
Adversarial Cheap Talk
Chris Xiaoxuan Lu
Timon Willi
Alistair Letcher
Jakob N. Foerster
AAML
29
17
0
20 Nov 2022
Discovered Policy Optimisation
Chris Xiaoxuan Lu
J. Kuba
Alistair Letcher
Luke Metz
Christian Schroeder de Witt
Jakob N. Foerster
OffRL
44
76
0
11 Oct 2022
1
2
Next