ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.04239
  4. Cited By
Learning to Rectify for Robust Learning with Noisy Labels

Learning to Rectify for Robust Learning with Noisy Labels

8 November 2021
Haoliang Sun
Chenhui Guo
Qinglai Wei
Zhongyi Han
Yilong Yin
    NoLa
ArXiv (abs)PDFHTML

Papers citing "Learning to Rectify for Robust Learning with Noisy Labels"

50 / 53 papers shown
Title
Augmentation Strategies for Learning with Noisy Labels
Augmentation Strategies for Learning with Noisy Labels
Kento Nishi
Yi Ding
Alex Rich
Tobias Höllerer
NoLa
62
118
0
03 Mar 2021
A Second-Order Approach to Learning with Instance-Dependent Label Noise
A Second-Order Approach to Learning with Instance-Dependent Label Noise
Zhaowei Zhu
Tongliang Liu
Yang Liu
NoLa
69
129
0
22 Dec 2020
Robustness of Accuracy Metric and its Inspirations in Learning with
  Noisy Labels
Robustness of Accuracy Metric and its Inspirations in Learning with Noisy Labels
Pengfei Chen
Junjie Ye
Guangyong Chen
Jingwei Zhao
Pheng-Ann Heng
NoLa
151
34
0
08 Dec 2020
Learning to Learn Variational Semantic Memory
Learning to Learn Variational Semantic Memory
Xiantong Zhen
Yingjun Du
Huan Xiong
Qiang Qiu
Cees G. M. Snoek
Ling Shao
SSLBDLVLMDRL
61
36
0
20 Oct 2020
Learning to Purify Noisy Labels via Meta Soft Label Corrector
Learning to Purify Noisy Labels via Meta Soft Label Corrector
Yichen Wu
Jun Shu
Qi Xie
Qian Zhao
Deyu Meng
42
67
0
03 Aug 2020
Early-Learning Regularization Prevents Memorization of Noisy Labels
Early-Learning Regularization Prevents Memorization of Noisy Labels
Sheng Liu
Jonathan Niles-Weed
N. Razavian
C. Fernandez‐Granda
NoLa
104
568
0
30 Jun 2020
Part-dependent Label Noise: Towards Instance-dependent Label Noise
Part-dependent Label Noise: Towards Instance-dependent Label Noise
Xiaobo Xia
Tongliang Liu
Bo Han
Nannan Wang
Biwei Huang
Haifeng Liu
Gang Niu
Dacheng Tao
Masashi Sugiyama
NoLa
59
67
0
14 Jun 2020
Learning to Learn Kernels with Variational Random Features
Learning to Learn Kernels with Variational Random Features
Xiantong Zhen
Hao Sun
Yingjun Du
Jun Xu
Yilong Yin
Ling Shao
Cees G. M. Snoek
DRL
72
34
0
11 Jun 2020
NoiseRank: Unsupervised Label Noise Reduction with Dependence Models
NoiseRank: Unsupervised Label Noise Reduction with Dependence Models
Karishma Sharma
Pinar E. Donmez
Enming Luo
Yan Liu
I. Z. Yalniz
NoLa
114
34
0
15 Mar 2020
Combating noisy labels by agreement: A joint training method with
  co-regularization
Combating noisy labels by agreement: A joint training method with co-regularization
Hongxin Wei
Lei Feng
Xiangyu Chen
Bo An
NoLa
358
519
0
05 Mar 2020
Improving Generalization by Controlling Label-Noise Information in
  Neural Network Weights
Improving Generalization by Controlling Label-Noise Information in Neural Network Weights
Hrayr Harutyunyan
Kyle Reing
Greg Ver Steeg
Aram Galstyan
NoLa
46
56
0
19 Feb 2020
DivideMix: Learning with Noisy Labels as Semi-supervised Learning
DivideMix: Learning with Noisy Labels as Semi-supervised Learning
Junnan Li
R. Socher
Guosheng Lin
NoLa
107
1,034
0
18 Feb 2020
MetaFun: Meta-Learning with Iterative Functional Updates
MetaFun: Meta-Learning with Iterative Functional Updates
Jin Xu
Jean-François Ton
Hyunjik Kim
Adam R. Kosiorek
Yee Whye Teh
70
68
0
05 Dec 2019
Meta Label Correction for Noisy Label Learning
Meta Label Correction for Noisy Label Learning
Guoqing Zheng
Ahmed Hassan Awadallah
S. Dumais
NoLaOffRL
104
184
0
10 Nov 2019
L_DMI: An Information-theoretic Noise-robust Loss Function
L_DMI: An Information-theoretic Noise-robust Loss Function
Yilun Xu
Peng Cao
Yuqing Kong
Yizhou Wang
NoLa
64
57
0
08 Sep 2019
Meta-Learning with Warped Gradient Descent
Meta-Learning with Warped Gradient Descent
Sebastian Flennerhag
Andrei A. Rusu
Razvan Pascanu
Francesco Visin
Hujun Yin
R. Hadsell
98
210
0
30 Aug 2019
Deep Self-Learning From Noisy Labels
Deep Self-Learning From Noisy Labels
Jiangfan Han
Ping Luo
Xiaogang Wang
NoLa
69
282
0
06 Aug 2019
Are Anchor Points Really Indispensable in Label-Noise Learning?
Are Anchor Points Really Indispensable in Label-Noise Learning?
Xiaobo Xia
Tongliang Liu
N. Wang
Bo Han
Chen Gong
Gang Niu
Masashi Sugiyama
NoLa
73
381
0
01 Jun 2019
Unsupervised Label Noise Modeling and Loss Correction
Unsupervised Label Noise Modeling and Loss Correction
Eric Arazo Sanchez
Diego Ortego
Paul Albert
Noel E. O'Connor
Kevin McGuinness
NoLa
90
615
0
25 Apr 2019
Wasserstein Adversarial Regularization (WAR) on label noise
Wasserstein Adversarial Regularization (WAR) on label noise
Kilian Fatras
B. Bushan
Sylvain Lobry
Rémi Flamary
D. Tuia
Nicolas Courty
51
25
0
08 Apr 2019
Probabilistic End-to-end Noise Correction for Learning with Noisy Labels
Probabilistic End-to-end Noise Correction for Learning with Noisy Labels
Kun Yi
Jianxin Wu
NoLa
68
418
0
19 Mar 2019
Noisy multi-label semi-supervised dimensionality reduction
Noisy multi-label semi-supervised dimensionality reduction
Karl Øyvind Mikalsen
C. Soguero-Ruíz
F. Bianchi
Robert Jenssen
NoLa
60
37
0
20 Feb 2019
Learning From Noisy Labels By Regularized Estimation Of Annotator
  Confusion
Learning From Noisy Labels By Regularized Estimation Of Annotator Confusion
Ryutaro Tanno
A. Saeedi
S. Sankaranarayanan
Daniel C. Alexander
N. Silberman
NoLa
84
232
0
10 Feb 2019
Adaptive Posterior Learning: few-shot learning with a surprise-based
  memory module
Adaptive Posterior Learning: few-shot learning with a surprise-based memory module
Tiago Ramalho
M. Garnelo
BDL
112
77
0
07 Feb 2019
How does Disagreement Help Generalization against Label Corruption?
How does Disagreement Help Generalization against Label Corruption?
Xingrui Yu
Bo Han
Jiangchao Yao
Gang Niu
Ivor W. Tsang
Masashi Sugiyama
NoLa
76
787
0
14 Jan 2019
Learning to Learn from Noisy Labeled Data
Learning to Learn from Noisy Labeled Data
Junnan Li
Yongkang Wong
Qi Zhao
Mohan Kankanhalli
NoLa
62
334
0
13 Dec 2018
Meta-Learning with Latent Embedding Optimization
Meta-Learning with Latent Embedding Optimization
Andrei A. Rusu
Dushyant Rao
Jakub Sygnowski
Oriol Vinyals
Razvan Pascanu
Simon Osindero
R. Hadsell
144
1,372
0
16 Jul 2018
Probabilistic Model-Agnostic Meta-Learning
Probabilistic Model-Agnostic Meta-Learning
Chelsea Finn
Kelvin Xu
Sergey Levine
BDL
273
672
0
07 Jun 2018
Dimensionality-Driven Learning with Noisy Labels
Dimensionality-Driven Learning with Noisy Labels
Xingjun Ma
Yisen Wang
Michael E. Houle
Shuo Zhou
S. Erfani
Shutao Xia
S. Wijewickrema
James Bailey
NoLa
78
434
0
07 Jun 2018
Meta-Learning Probabilistic Inference For Prediction
Meta-Learning Probabilistic Inference For Prediction
Jonathan Gordon
J. Bronskill
Matthias Bauer
Sebastian Nowozin
Richard Turner
BDL
120
265
0
24 May 2018
Masking: A New Perspective of Noisy Supervision
Masking: A New Perspective of Noisy Supervision
Bo Han
Jiangchao Yao
Gang Niu
Mingyuan Zhou
Ivor Tsang
Ya Zhang
Masashi Sugiyama
NoLa
73
255
0
21 May 2018
Meta-learning with differentiable closed-form solvers
Meta-learning with differentiable closed-form solvers
Luca Bertinetto
João F. Henriques
Philip Torr
Andrea Vedaldi
ODL
100
930
0
21 May 2018
Generalized Cross Entropy Loss for Training Deep Neural Networks with
  Noisy Labels
Generalized Cross Entropy Loss for Training Deep Neural Networks with Noisy Labels
Zhilu Zhang
M. Sabuncu
NoLa
85
2,610
0
20 May 2018
Co-teaching: Robust Training of Deep Neural Networks with Extremely
  Noisy Labels
Co-teaching: Robust Training of Deep Neural Networks with Extremely Noisy Labels
Bo Han
Quanming Yao
Xingrui Yu
Gang Niu
Miao Xu
Weihua Hu
Ivor Tsang
Masashi Sugiyama
NoLa
120
2,078
0
18 Apr 2018
Learning to Reweight Examples for Robust Deep Learning
Learning to Reweight Examples for Robust Deep Learning
Mengye Ren
Wenyuan Zeng
Binh Yang
R. Urtasun
OODNoLa
149
1,431
0
24 Mar 2018
Using Trusted Data to Train Deep Networks on Labels Corrupted by Severe
  Noise
Using Trusted Data to Train Deep Networks on Labels Corrupted by Severe Noise
Dan Hendrycks
Mantas Mazeika
Duncan Wilson
Kevin Gimpel
NoLa
134
556
0
14 Feb 2018
Robust Loss Functions under Label Noise for Deep Neural Networks
Robust Loss Functions under Label Noise for Deep Neural Networks
Aritra Ghosh
Himanshu Kumar
P. Sastry
NoLaOOD
78
959
0
27 Dec 2017
MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks
  on Corrupted Labels
MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks on Corrupted Labels
Lu Jiang
Zhengyuan Zhou
Thomas Leung
Li Li
Li Fei-Fei
NoLa
126
1,456
0
14 Dec 2017
CleanNet: Transfer Learning for Scalable Image Classifier Training with
  Label Noise
CleanNet: Transfer Learning for Scalable Image Classifier Training with Label Noise
Kuang-Huei Lee
Xiaodong He
Lei Zhang
Linjun Yang
NoLa
76
458
0
20 Nov 2017
Meta-Learning and Universality: Deep Representations and Gradient
  Descent can Approximate any Learning Algorithm
Meta-Learning and Universality: Deep Representations and Gradient Descent can Approximate any Learning Algorithm
Chelsea Finn
Sergey Levine
SSL
96
223
0
31 Oct 2017
mixup: Beyond Empirical Risk Minimization
mixup: Beyond Empirical Risk Minimization
Hongyi Zhang
Moustapha Cissé
Yann N. Dauphin
David Lopez-Paz
NoLa
289
9,803
0
25 Oct 2017
A Closer Look at Memorization in Deep Networks
A Closer Look at Memorization in Deep Networks
Devansh Arpit
Stanislaw Jastrzebski
Nicolas Ballas
David M. Krueger
Emmanuel Bengio
...
Tegan Maharaj
Asja Fischer
Aaron Courville
Yoshua Bengio
Simon Lacoste-Julien
TDI
128
1,825
0
16 Jun 2017
Decoupling "when to update" from "how to update"
Decoupling "when to update" from "how to update"
Eran Malach
Shai Shalev-Shwartz
NoLa
95
568
0
08 Jun 2017
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
829
11,943
0
09 Mar 2017
Regularizing Neural Networks by Penalizing Confident Output
  Distributions
Regularizing Neural Networks by Penalizing Confident Output Distributions
Gabriel Pereyra
George Tucker
J. Chorowski
Lukasz Kaiser
Geoffrey E. Hinton
NoLa
165
1,141
0
23 Jan 2017
Understanding deep learning requires rethinking generalization
Understanding deep learning requires rethinking generalization
Chiyuan Zhang
Samy Bengio
Moritz Hardt
Benjamin Recht
Oriol Vinyals
HAI
348
4,635
0
10 Nov 2016
Deep Label Distribution Learning with Label Ambiguity
Deep Label Distribution Learning with Label Ambiguity
Bin-Bin Gao
Chao Xing
Chen-Wei Xie
Jianxin Wu
Xin Geng
60
428
0
06 Nov 2016
Matching Networks for One Shot Learning
Matching Networks for One Shot Learning
Oriol Vinyals
Charles Blundell
Timothy Lillicrap
Koray Kavukcuoglu
Daan Wierstra
VLM
375
7,333
0
13 Jun 2016
Cost Sensitive Learning of Deep Feature Representations from Imbalanced
  Data
Cost Sensitive Learning of Deep Feature Representations from Imbalanced Data
Salman H. Khan
Munawar Hayat
Bennamoun
Ferdous Sohel
R. Togneri
74
885
0
14 Aug 2015
Webly Supervised Learning of Convolutional Networks
Webly Supervised Learning of Convolutional Networks
Xinlei Chen
Abhinav Gupta
SSL
86
373
0
07 May 2015
12
Next