Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2111.02801
Cited By
Gradient-enhanced physics-informed neural networks for forward and inverse PDE problems
1 November 2021
Jeremy Yu
Lu Lu
Xuhui Meng
George Karniadakis
PINN
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Gradient-enhanced physics-informed neural networks for forward and inverse PDE problems"
39 / 139 papers shown
Title
Physics-informed Neural Networks with Periodic Activation Functions for Solute Transport in Heterogeneous Porous Media
Salah A. Faroughi
Ramin Soltanmohammad
Pingki Datta
S. K. Mahjour
S. Faroughi
21
22
0
17 Dec 2022
Deep Learning Methods for Partial Differential Equations and Related Parameter Identification Problems
Derick Nganyu Tanyu
Jianfeng Ning
Tom Freudenberg
Nick Heilenkötter
A. Rademacher
U. Iben
Peter Maass
AI4CE
23
34
0
06 Dec 2022
On the Compatibility between Neural Networks and Partial Differential Equations for Physics-informed Learning
Kuangdai Leng
Jeyan Thiyagalingam
PINN
26
3
0
01 Dec 2022
Physics-informed Neural Networks with Unknown Measurement Noise
Philipp Pilar
Niklas Wahlström
PINN
23
6
0
28 Nov 2022
Physics-Informed Machine Learning: A Survey on Problems, Methods and Applications
Zhongkai Hao
Songming Liu
Yichi Zhang
Chengyang Ying
Yao Feng
Hang Su
Jun Zhu
PINN
AI4CE
35
89
0
15 Nov 2022
Gradient-enhanced deep neural network approximations
Xiaodong Feng
Li Zeng
UQCV
26
5
0
08 Nov 2022
Data-driven modeling of Landau damping by physics-informed neural networks
Yilan Qin
Jiayu Ma
M. Jiang
C. Dong
H. Fu
Liang Wang
Wen-jie Cheng
Yaqiu Jin
PINN
AI4CE
13
7
0
02 Nov 2022
Meta Learning of Interface Conditions for Multi-Domain Physics-Informed Neural Networks
Shibo Li
Michael Penwarden
Yiming Xu
Conor Tillinghast
Akil Narayan
Robert M. Kirby
Shandian Zhe
AI4CE
18
4
0
23 Oct 2022
A Dimension-Augmented Physics-Informed Neural Network (DaPINN) with High Level Accuracy and Efficiency
Weilong Guan
Kai-Ping Yang
Yinsheng Chen
Zhong Guan
PINN
AI4CE
18
12
0
19 Oct 2022
Robust Regression with Highly Corrupted Data via Physics Informed Neural Networks
Wei Peng
Wenjuan Yao
Weien Zhou
Xiaoya Zhang
Weijie Yao
PINN
53
5
0
19 Oct 2022
Asymptotic-Preserving Neural Networks for hyperbolic systems with diffusive scaling
Giulia Bertaglia
AI4CE
24
5
0
17 Oct 2022
Certified machine learning: Rigorous a posteriori error bounds for PDE defined PINNs
Birgit Hillebrecht
B. Unger
PINN
13
5
0
07 Oct 2022
Residual-based error correction for neural operator accelerated infinite-dimensional Bayesian inverse problems
Lianghao Cao
Thomas O'Leary-Roseberry
Prashant K. Jha
J. Oden
Omar Ghattas
28
26
0
06 Oct 2022
Failure-informed adaptive sampling for PINNs
Zhiwei Gao
Liang Yan
Tao Zhou
18
77
0
01 Oct 2022
Scaling transformation of the multimode nonlinear Schrödinger equation for physics-informed neural networks
I. Chuprov
D. Efremenko
Jiexing Gao
P. Anisimov
V. Zemlyakov
24
0
0
29 Sep 2022
GeONet: a neural operator for learning the Wasserstein geodesic
Andrew Gracyk
Xiaohui Chen
OT
21
2
0
28 Sep 2022
Residual-Quantile Adjustment for Adaptive Training of Physics-informed Neural Network
Jiayue Han
Zhiqiang Cai
Zhiyou Wu
Xiang Zhou
44
7
0
09 Sep 2022
MRF-PINN: A Multi-Receptive-Field convolutional physics-informed neural network for solving partial differential equations
Shihong Zhang
Chi Zhang
Bo Wang
AI4CE
24
3
0
06 Sep 2022
A comprehensive study of non-adaptive and residual-based adaptive sampling for physics-informed neural networks
Chen-Chun Wu
Min Zhu
Qinyan Tan
Yadhu Kartha
Lu Lu
29
352
0
21 Jul 2022
Unsupervised Legendre-Galerkin Neural Network for Singularly Perturbed Partial Differential Equations
Junho Choi
N. Kim
Youngjoon Hong
AI4CE
24
0
0
21 Jul 2022
A mixed formulation for physics-informed neural networks as a potential solver for engineering problems in heterogeneous domains: comparison with finite element method
Shahed Rezaei
Ali Harandi
Ahmad Moeineddin
Bai-Xiang Xu
Stefanie Reese
21
112
0
27 Jun 2022
Asymptotic-Preserving Neural Networks for multiscale hyperbolic models of epidemic spread
Giulia Bertaglia
Chuan Lu
L. Pareschi
Xueyu Zhu
AI4CE
11
17
0
25 Jun 2022
Derivative-Informed Neural Operator: An Efficient Framework for High-Dimensional Parametric Derivative Learning
Thomas O'Leary-Roseberry
Peng Chen
Umberto Villa
Omar Ghattas
AI4CE
32
39
0
21 Jun 2022
Gradient-Enhanced Physics-Informed Neural Networks for Power Systems Operational Support
M. Mohammadian
K. Baker
Ferdinando Fioretto
PINN
AI4CE
15
21
0
21 Jun 2022
Enforcing continuous symmetries in physics-informed neural network for solving forward and inverse problems of partial differential equations
Zhi‐Yong Zhang
Hui Zhang
Li-sheng Zhang
Lei‐Lei Guo
PINN
AI4CE
14
27
0
19 Jun 2022
Accelerated Training of Physics-Informed Neural Networks (PINNs) using Meshless Discretizations
Ramansh Sharma
Varun Shankar
37
40
0
19 May 2022
Scalable algorithms for physics-informed neural and graph networks
K. Shukla
Mengjia Xu
N. Trask
George Karniadakis
PINN
AI4CE
72
40
0
16 May 2022
Sobolev Acceleration and Statistical Optimality for Learning Elliptic Equations via Gradient Descent
Yiping Lu
Jose H. Blanchet
Lexing Ying
38
7
0
15 May 2022
RANG: A Residual-based Adaptive Node Generation Method for Physics-Informed Neural Networks
Wei Peng
Weien Zhou
Xiaoya Zhang
Wenjuan Yao
Zheliang Liu
23
15
0
02 May 2022
RAR-PINN algorithm for the data-driven vector-soliton solutions and parameter discovery of coupled nonlinear equations
Shulan Qin
Min Li
Tao Xu
Shaotong Dong
17
9
0
29 Apr 2022
Multifidelity deep neural operators for efficient learning of partial differential equations with application to fast inverse design of nanoscale heat transport
Lu Lu
R. Pestourie
Steven G. Johnson
Giuseppe Romano
AI4CE
21
102
0
14 Apr 2022
MIONet: Learning multiple-input operators via tensor product
Pengzhan Jin
Shuai Meng
Lu Lu
20
158
0
12 Feb 2022
DAS-PINNs: A deep adaptive sampling method for solving high-dimensional partial differential equations
Keju Tang
Xiaoliang Wan
Chao Yang
24
107
0
28 Dec 2021
Efficient training of physics-informed neural networks via importance sampling
M. A. Nabian
R. J. Gladstone
Hadi Meidani
DiffM
PINN
71
222
0
26 Apr 2021
One-shot learning for solution operators of partial differential equations
Priya Kasimbeg
Haiyang He
Rishikesh Ranade
Jay Pathak
Lu Lu
AI4CE
21
11
0
06 Apr 2021
Physics-informed neural networks with hard constraints for inverse design
Lu Lu
R. Pestourie
Wenjie Yao
Zhicheng Wang
F. Verdugo
Steven G. Johnson
PINN
41
494
0
09 Feb 2021
An overview on deep learning-based approximation methods for partial differential equations
C. Beck
Martin Hutzenthaler
Arnulf Jentzen
Benno Kuckuck
30
146
0
22 Dec 2020
On the eigenvector bias of Fourier feature networks: From regression to solving multi-scale PDEs with physics-informed neural networks
Sizhuang He
Hanwen Wang
P. Perdikaris
131
438
0
18 Dec 2020
Multi-scale Deep Neural Network (MscaleDNN) for Solving Poisson-Boltzmann Equation in Complex Domains
Ziqi Liu
Wei Cai
Zhi-Qin John Xu
AI4CE
223
122
0
22 Jul 2020
Previous
1
2
3