ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.01555
  4. Cited By
Likelihood-Free Inference in State-Space Models with Unknown Dynamics

Likelihood-Free Inference in State-Space Models with Unknown Dynamics

2 November 2021
Alexander Aushev
Thong Tran
Henri Pesonen
Andrew Howes
Samuel Kaski
ArXivPDFHTML

Papers citing "Likelihood-Free Inference in State-Space Models with Unknown Dynamics"

31 / 31 papers shown
Title
Likelihood-Free Inference with Deep Gaussian Processes
Likelihood-Free Inference with Deep Gaussian Processes
Alexander Aushev
Henri Pesonen
Markus Heinonen
J. Corander
Samuel Kaski
GP
60
10
0
18 Jun 2020
Differentiable Expected Hypervolume Improvement for Parallel
  Multi-Objective Bayesian Optimization
Differentiable Expected Hypervolume Improvement for Parallel Multi-Objective Bayesian Optimization
Sam Daulton
Maximilian Balandat
E. Bakshy
44
242
0
09 Jun 2020
On Contrastive Learning for Likelihood-free Inference
On Contrastive Learning for Likelihood-free Inference
Conor Durkan
Iain Murray
George Papamakarios
BDL
204
123
0
10 Feb 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
493
42,407
0
03 Dec 2019
The frontier of simulation-based inference
The frontier of simulation-based inference
Kyle Cranmer
Johann Brehmer
Gilles Louppe
AI4CE
172
851
0
04 Nov 2019
Structured Variational Inference in Unstable Gaussian Process State
  Space Models
Structured Variational Inference in Unstable Gaussian Process State Space Models
Silvan Melchior
Sebastian Curi
Felix Berkenkamp
Andreas Krause
54
4
0
16 Jul 2019
Overcoming Mean-Field Approximations in Recurrent Gaussian Process
  Models
Overcoming Mean-Field Approximations in Recurrent Gaussian Process Models
Alessandro Davide Ialongo
Mark van der Wilk
J. Hensman
C. Rasmussen
72
30
0
13 Jun 2019
Automatic Posterior Transformation for Likelihood-Free Inference
Automatic Posterior Transformation for Likelihood-Free Inference
David S. Greenberg
M. Nonnenmacher
Jakob H. Macke
368
329
0
17 May 2019
Learning to Predict the Cosmological Structure Formation
Learning to Predict the Cosmological Structure Formation
Siyu He
Yin Li
Yu Feng
S. Ho
Siamak Ravanbakhsh
Wei Chen
Barnabás Póczós
64
170
0
15 Nov 2018
Maximizing acquisition functions for Bayesian optimization
Maximizing acquisition functions for Bayesian optimization
James T. Wilson
Frank Hutter
M. Deisenroth
119
246
0
25 May 2018
Sequential Neural Likelihood: Fast Likelihood-free Inference with
  Autoregressive Flows
Sequential Neural Likelihood: Fast Likelihood-free Inference with Autoregressive Flows
George Papamakarios
D. Sterratt
Iain Murray
BDL
525
367
0
18 May 2018
UMAP: Uniform Manifold Approximation and Projection for Dimension
  Reduction
UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction
Leland McInnes
John Healy
James Melville
157
9,413
0
09 Feb 2018
Probabilistic Recurrent State-Space Models
Probabilistic Recurrent State-Space Models
Andreas Doerr
Christian Daniel
Martin Schiegg
D. Nguyen-Tuong
S. Schaal
Marc Toussaint
Sebastian Trimpe
64
122
0
31 Jan 2018
Advances in Variational Inference
Advances in Variational Inference
Cheng Zhang
Judith Butepage
Hedvig Kjellström
Stephan Mandt
BDL
175
691
0
15 Nov 2017
Flexible statistical inference for mechanistic models of neural dynamics
Flexible statistical inference for mechanistic models of neural dynamics
Jan-Matthis Lueckmann
P. J. Gonçalves
Giacomo Bassetto
Kaan Öcal
M. Nonnenmacher
Jakob H. Macke
166
245
0
06 Nov 2017
ELFI: Engine for Likelihood-Free Inference
ELFI: Engine for Likelihood-Free Inference
Jarno Lintusaari
H. Vuollekoski
A. Kangasrääsiö
Kusti Skytén
Marko Jarvenpaa
Pekka Marttinen
Michael U. Gutmann
Aki Vehtari
J. Corander
Samuel Kaski
53
73
0
02 Aug 2017
Proximal Policy Optimization Algorithms
Proximal Policy Optimization Algorithms
John Schulman
Filip Wolski
Prafulla Dhariwal
Alec Radford
Oleg Klimov
OffRL
487
19,019
0
20 Jul 2017
OpenAI Gym
OpenAI Gym
Greg Brockman
Vicki Cheung
Ludwig Pettersson
Jonas Schneider
John Schulman
Jie Tang
Wojciech Zaremba
OffRL
ODL
214
5,076
0
05 Jun 2016
Deep Variational Bayes Filters: Unsupervised Learning of State Space
  Models from Raw Data
Deep Variational Bayes Filters: Unsupervised Learning of State Space Models from Raw Data
Maximilian Karl
Maximilian Sölch
Justin Bayer
Patrick van der Smagt
BDL
49
375
0
20 May 2016
Auxiliary Likelihood-Based Approximate Bayesian Computation in State
  Space Models
Auxiliary Likelihood-Based Approximate Bayesian Computation in State Space Models
G. Martin
Brendan P. M. McCabe
David T. Frazier
Worapree Maneesoonthorn
Christian P. Robert
52
44
0
27 Apr 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
193,878
0
10 Dec 2015
Bayesian Optimization for Likelihood-Free Inference of Simulator-Based
  Statistical Models
Bayesian Optimization for Likelihood-Free Inference of Simulator-Based Statistical Models
Michael U. Gutmann
J. Corander
150
286
0
14 Jan 2015
Variational Gaussian Process State-Space Models
Variational Gaussian Process State-Space Models
R. Frigola
Yutian Chen
C. Rasmussen
BDL
56
178
0
18 Jun 2014
Parameter Estimation in Hidden Markov Models with Intractable
  Likelihoods Using Sequential Monte Carlo
Parameter Estimation in Hidden Markov Models with Intractable Likelihoods Using Sequential Monte Carlo
S. Yıldırım
Sumeetpal S. Singh
Thomas Dean
Ajay Jasra
74
36
0
17 Nov 2013
Approximate Bayesian Computation for Smoothing
Approximate Bayesian Computation for Smoothing
James S. Martin
Ajay Jasra
Sumeetpal S. Singh
N. Whiteley
E. McCoy
58
25
0
22 Jun 2012
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian
  Monte Carlo
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo
Matthew D. Hoffman
Andrew Gelman
165
4,300
0
18 Nov 2011
Expectation-Propagation for Likelihood-Free Inference
Expectation-Propagation for Likelihood-Free Inference
Simon Barthelmé
Nicolas Chopin
77
85
0
29 Jul 2011
Parameter Estimation for Hidden Markov Models with Intractable
  Likelihoods
Parameter Estimation for Hidden Markov Models with Intractable Likelihoods
Elena Ehrlich
Sumeetpal S. Singh
Ajay Jasra
N. Kantas
TPM
92
92
0
28 Mar 2011
A Tutorial on Bayesian Optimization of Expensive Cost Functions, with
  Application to Active User Modeling and Hierarchical Reinforcement Learning
A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning
E. Brochu
Vlad M. Cora
Nando de Freitas
GP
136
2,447
0
12 Dec 2010
Likelihood-free Bayesian inference for alpha-stable models
Likelihood-free Bayesian inference for alpha-stable models
G. Peters
Scott A. Sisson
Yanan Fan
75
65
0
23 Dec 2009
Approximate Bayesian computation scheme for parameter inference and
  model selection in dynamical systems
Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems
Tina Toni
David Welch
N. Strelkowa
Andreas Ipsen
M. Stumpf
242
1,547
0
14 Jan 2009
1