ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.01409
  4. Cited By
Efficient Learning of the Parameters of Non-Linear Models using
  Differentiable Resampling in Particle Filters
v1v2 (latest)

Efficient Learning of the Parameters of Non-Linear Models using Differentiable Resampling in Particle Filters

2 November 2021
Conor Rosato
Vincent Beraud
P. Horridge
Thomas B. Schon
Simon Maskell
ArXiv (abs)PDFHTML

Papers citing "Efficient Learning of the Parameters of Non-Linear Models using Differentiable Resampling in Particle Filters"

27 / 27 papers shown
Title
Differentiable Particle Filters through Conditional Normalizing Flow
Differentiable Particle Filters through Conditional Normalizing Flow
Xiongjie Chen
Hao Wen
Yunpeng Li
40
21
0
01 Jul 2021
Differentiable Particle Filtering without Modifying the Forward Pass
Differentiable Particle Filtering without Modifying the Forward Pass
Adam Scibior
Frank Wood
60
19
0
18 Jun 2021
Differentiable Particle Filtering via Entropy-Regularized Optimal
  Transport
Differentiable Particle Filtering via Entropy-Regularized Optimal Transport
Adrien Corenflos
James Thornton
George Deligiannidis
Arnaud Doucet
OT
69
68
0
15 Feb 2021
How to Train Your Differentiable Filter
How to Train Your Differentiable Filter
Alina Kloss
Georg Martius
Jeannette Bohg
105
47
0
28 Dec 2020
End-To-End Semi-supervised Learning for Differentiable Particle Filters
End-To-End Semi-supervised Learning for Differentiable Particle Filters
Hao Wen
Xiongjie Chen
Georgios Papagiannis
Conghui Hu
Yunpeng Li
49
17
0
11 Nov 2020
Towards Differentiable Resampling
Towards Differentiable Resampling
Michael Zhu
Kevin Patrick Murphy
Rico Jonschkowski
51
27
0
24 Apr 2020
Model error covariance estimation in particle and ensemble Kalman
  filters using an online expectation-maximization algorithm
Model error covariance estimation in particle and ensemble Kalman filters using an online expectation-maximization algorithm
T. Cocucci
M. Pulido
M. Lucini
P. Tandeo
61
11
0
04 Mar 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
538
42,591
0
03 Dec 2019
Stochastic quasi-Newton with line-search regularization
Stochastic quasi-Newton with line-search regularization
A. Wills
Thomas B. Schon
ODL
58
21
0
03 Sep 2019
Particle Filter Recurrent Neural Networks
Particle Filter Recurrent Neural Networks
Xiao Ma
Peter Karkus
David Hsu
Wee Sun Lee
58
83
0
30 May 2019
Differentiable Particle Filters: End-to-End Learning with Algorithmic
  Priors
Differentiable Particle Filters: End-to-End Learning with Algorithmic Priors
Rico Jonschkowski
Divyam Rastogi
Oliver Brock
53
135
0
28 May 2018
Particle Filter Networks with Application to Visual Localization
Particle Filter Networks with Application to Visual Localization
Peter Karkus
David Hsu
Wee Sun Lee
3DPC
43
117
0
23 May 2018
Geometric integrators and the Hamiltonian Monte Carlo method
Geometric integrators and the Hamiltonian Monte Carlo method
Nawaf Bou-Rabee
J. Sanz-Serna
58
98
0
14 Nov 2017
Nudging the particle filter
Nudging the particle filter
Ömer Deniz Akyıldız
Joaquín Míguez
73
27
0
25 Aug 2017
Categorical Reparameterization with Gumbel-Softmax
Categorical Reparameterization with Gumbel-Softmax
Eric Jang
S. Gu
Ben Poole
BDL
349
5,379
0
03 Nov 2016
Identifying the Optimal Integration Time in Hamiltonian Monte Carlo
Identifying the Optimal Integration Time in Hamiltonian Monte Carlo
M. Betancourt
44
37
0
02 Jan 2016
Getting Started with Particle Metropolis-Hastings for Inference in
  Nonlinear Dynamical Models
Getting Started with Particle Metropolis-Hastings for Inference in Nonlinear Dynamical Models
J. Dahlin
Thomas B. Schon
52
25
0
05 Nov 2015
The Metropolis-Hastings algorithm
The Metropolis-Hastings algorithm
Christian P. Robert
45
169
0
08 Apr 2015
Particle Metropolis adjusted Langevin algorithms for state space models
Christopher Nemeth
Paul Fearnhead
71
19
0
04 Feb 2014
Auto-Encoding Variational Bayes
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
455
16,923
0
20 Dec 2013
Particle Metropolis-Hastings using gradient and Hessian information
Particle Metropolis-Hastings using gradient and Hessian information
J. Dahlin
Fredrik Lindsten
Thomas B. Schon
88
47
0
04 Nov 2013
Nested particle filters for online parameter estimation in discrete-time
  state-space Markov models
Nested particle filters for online parameter estimation in discrete-time state-space Markov models
Dan Crisan
Joaquín Míguez
72
95
0
08 Aug 2013
Particle approximations of the score and observed information matrix for
  parameter estimation in state space models with linear computational cost
Particle approximations of the score and observed information matrix for parameter estimation in state space models with linear computational cost
Christopher Nemeth
Paul Fearnhead
Lyudmila Mihaylova
102
45
0
04 Jun 2013
MCMC using Hamiltonian dynamics
MCMC using Hamiltonian dynamics
Radford M. Neal
292
3,282
0
09 Jun 2012
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian
  Monte Carlo
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo
Matthew D. Hoffman
Andrew Gelman
169
4,309
0
18 Nov 2011
Uniform Stability of a Particle Approximation of the Optimal Filter
  Derivative
Uniform Stability of a Particle Approximation of the Optimal Filter Derivative
P. Del Moral
Arnaud Doucet
Sumeetpal S. Singh
119
29
0
13 Jun 2011
SMC^2: an efficient algorithm for sequential analysis of state-space
  models
SMC^2: an efficient algorithm for sequential analysis of state-space models
Nicolas Chopin
Pierre E. Jacob
O. Papaspiliopoulos
93
357
0
07 Jan 2011
1