ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.10915
  4. Cited By
On some theoretical limitations of Generative Adversarial Networks

On some theoretical limitations of Generative Adversarial Networks

21 October 2021
Benoit Oriol
Alexandre Miot
    GAN
ArXivPDFHTML

Papers citing "On some theoretical limitations of Generative Adversarial Networks"

5 / 5 papers shown
Title
Improved Estimation of Concentration Under $\ell_p$-Norm Distance
  Metrics Using Half Spaces
Improved Estimation of Concentration Under ℓp\ell_pℓp​-Norm Distance Metrics Using Half Spaces
Jack Prescott
Xiao Zhang
David Evans
28
5
0
24 Mar 2021
Pareto GAN: Extending the Representational Power of GANs to Heavy-Tailed
  Distributions
Pareto GAN: Extending the Representational Power of GANs to Heavy-Tailed Distributions
Todd P. Huster
Jérémy E. Cohen
Zinan Lin
Kevin S. Chan
Charles A. Kamhoua
Nandi O. Leslie
C. Chiang
Vyas Sekar
GAN
60
28
0
22 Jan 2021
Random Matrix Theory Proves that Deep Learning Representations of
  GAN-data Behave as Gaussian Mixtures
Random Matrix Theory Proves that Deep Learning Representations of GAN-data Behave as Gaussian Mixtures
M. Seddik
Cosme Louart
M. Tamaazousti
Romain Couillet
52
67
0
21 Jan 2020
Copula & Marginal Flows: Disentangling the Marginal from its Joint
Copula & Marginal Flows: Disentangling the Marginal from its Joint
Magnus Wiese
R. Knobloch
R. Korn
DRL
38
21
0
07 Jul 2019
Adversarial vulnerability for any classifier
Adversarial vulnerability for any classifier
Alhussein Fawzi
Hamza Fawzi
Omar Fawzi
AAML
70
250
0
23 Feb 2018
1