ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.09778
  4. Cited By
Explaining Deep Tractable Probabilistic Models: The sum-product network
  case

Explaining Deep Tractable Probabilistic Models: The sum-product network case

19 October 2021
Athresh Karanam
Saurabh Mathur
P. Radivojac
David M. Haas
Kristian Kersting
Sriraam Natarajan
    FAtt
    TPM
    LRM
ArXivPDFHTML

Papers citing "Explaining Deep Tractable Probabilistic Models: The sum-product network case"

19 / 19 papers shown
Title
Interventional Sum-Product Networks: Causal Inference with Tractable
  Probabilistic Models
Interventional Sum-Product Networks: Causal Inference with Tractable Probabilistic Models
Matej Zečević
Devendra Singh Dhami
Athresh Karanam
S. Natarajan
Kristian Kersting
CML
TPM
67
32
0
20 Feb 2021
Identifying Causal Effects via Context-specific Independence Relations
Identifying Causal Effects via Context-specific Independence Relations
Santtu Tikka
Antti Hyttinen
Juha Karvanen
CML
17
28
0
21 Sep 2020
A New Perspective on Learning Context-Specific Independence
A New Perspective on Learning Context-Specific Independence
Yujia Shen
Arthur Choi
Adnan Darwiche
23
8
0
12 Jun 2020
SPFlow: An Easy and Extensible Library for Deep Probabilistic Learning
  using Sum-Product Networks
SPFlow: An Easy and Extensible Library for Deep Probabilistic Learning using Sum-Product Networks
Alejandro Molina
Antonio Vergari
Karl Stelzner
Robert Peharz
P. Subramani
Nicola Di Mauro
Pascal Poupart
Kristian Kersting
TPM
23
60
0
11 Jan 2019
Visual Interpretability for Deep Learning: a Survey
Visual Interpretability for Deep Learning: a Survey
Quanshi Zhang
Song-Chun Zhu
FaML
HAI
78
813
0
02 Feb 2018
On Relaxing Determinism in Arithmetic Circuits
On Relaxing Determinism in Arithmetic Circuits
Arthur Choi
Adnan Darwiche
23
57
0
22 Aug 2017
Methods for Interpreting and Understanding Deep Neural Networks
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
268
2,254
0
24 Jun 2017
Towards A Rigorous Science of Interpretable Machine Learning
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
348
3,742
0
28 Feb 2017
Deep Probabilistic Programming
Deep Probabilistic Programming
Dustin Tran
Matthew D. Hoffman
Rif A. Saurous
E. Brevdo
Kevin Patrick Murphy
David M. Blei
BDL
60
193
0
13 Jan 2017
Random Feature Expansions for Deep Gaussian Processes
Random Feature Expansions for Deep Gaussian Processes
Kurt Cutajar
Edwin V. Bonilla
Pietro Michiardi
Maurizio Filippone
BDL
39
144
0
14 Oct 2016
Visualizing and Understanding Sum-Product Networks
Visualizing and Understanding Sum-Product Networks
Antonio Vergari
Nicola Di Mauro
F. Esposito
FAtt
AAML
TPM
91
45
0
29 Aug 2016
On the Latent Variable Interpretation in Sum-Product Networks
On the Latent Variable Interpretation in Sum-Product Networks
Robert Peharz
Robert Gens
Franz Pernkopf
Pedro M. Domingos
TPM
22
132
0
22 Jan 2016
Beyond Short Snippets: Deep Networks for Video Classification
Beyond Short Snippets: Deep Networks for Video Classification
Joe Yue-Hei Ng
Matthew J. Hausknecht
Sudheendra Vijayanarasimhan
Oriol Vinyals
R. Monga
G. Toderici
111
2,334
0
31 Mar 2015
On the Relationship between Sum-Product Networks and Bayesian Networks
On the Relationship between Sum-Product Networks and Bayesian Networks
Haiying Zhao
Mazen Melibari
Pascal Poupart
TPM
56
91
0
06 Jan 2015
Context-specific independence in graphical log-linear models
Context-specific independence in graphical log-linear models
Henrik J. Nyman
J. Pensar
T. Koski
J. Corander
42
24
0
09 Sep 2014
Auto-Encoding Variational Bayes
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
367
16,962
0
20 Dec 2013
Stratified Graphical Models - Context-Specific Independence in Graphical
  Models
Stratified Graphical Models - Context-Specific Independence in Graphical Models
Henrik J. Nyman
J. Pensar
T. Koski
J. Corander
37
30
0
25 Sep 2013
Context-Specific Independence in Bayesian Networks
Context-Specific Independence in Bayesian Networks
Craig Boutilier
N. Friedman
M. Goldszmidt
D. Koller
127
822
0
13 Feb 2013
Sum-Product Networks: A New Deep Architecture
Sum-Product Networks: A New Deep Architecture
Hoifung Poon
Pedro M. Domingos
TPM
64
757
0
14 Feb 2012
1