Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2110.09468
Cited By
Improving Robustness using Generated Data
18 October 2021
Sven Gowal
Sylvestre-Alvise Rebuffi
Olivia Wiles
Florian Stimberg
D. A. Calian
Timothy A. Mann
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Improving Robustness using Generated Data"
50 / 200 papers shown
Title
Adversarial Training Should Be Cast as a Non-Zero-Sum Game
Alexander Robey
Fabian Latorre
George J. Pappas
Hamed Hassani
V. Cevher
AAML
66
12
0
19 Jun 2023
Wasserstein distributional robustness of neural networks
Xingjian Bai
Guangyi He
Yifan Jiang
J. Obłój
OOD
AAML
16
6
0
16 Jun 2023
Towards Understanding Clean Generalization and Robust Overfitting in Adversarial Training
Binghui Li
Yuanzhi Li
AAML
26
3
0
02 Jun 2023
On the Importance of Backbone to the Adversarial Robustness of Object Detectors
Xiao-Li Li
Hang Chen
Xiaolin Hu
AAML
38
4
0
27 May 2023
Detecting Adversarial Data by Probing Multiple Perturbations Using Expected Perturbation Score
Shuhai Zhang
Feng Liu
Jiahao Yang
Yifan Yang
Changsheng Li
Bo Han
Mingkui Tan
DiffM
AAML
34
17
0
25 May 2023
Training on Thin Air: Improve Image Classification with Generated Data
Yongchao Zhou
Hshmat Sahak
Jimmy Ba
DiffM
19
43
0
24 May 2023
Decoupled Kullback-Leibler Divergence Loss
Jiequan Cui
Zhuotao Tian
Zhisheng Zhong
Xiaojuan Qi
Bei Yu
Hanwang Zhang
39
38
0
23 May 2023
DiffProtect: Generate Adversarial Examples with Diffusion Models for Facial Privacy Protection
Jiang-Long Liu
Chun Pong Lau
Ramalingam Chellappa
DiffM
34
31
0
23 May 2023
How Deep Learning Sees the World: A Survey on Adversarial Attacks & Defenses
Joana Cabral Costa
Tiago Roxo
Hugo Manuel Proença
Pedro R. M. Inácio
AAML
37
50
0
18 May 2023
Raising the Bar for Certified Adversarial Robustness with Diffusion Models
Thomas Altstidl
David Dobre
Björn Eskofier
Gauthier Gidel
Leo Schwinn
DiffM
34
7
0
17 May 2023
Utility Theory of Synthetic Data Generation
Shi Xu
W. Sun
Guang Cheng
25
5
0
17 May 2023
The Best Defense is Attack: Repairing Semantics in Textual Adversarial Examples
Heng Yang
Ke Li
AAML
27
2
0
06 May 2023
Synthetic Data from Diffusion Models Improves ImageNet Classification
Shekoofeh Azizi
Simon Kornblith
Chitwan Saharia
Mohammad Norouzi
David J. Fleet
VLM
DiffM
40
292
0
17 Apr 2023
Improving Fast Adversarial Training with Prior-Guided Knowledge
Xiaojun Jia
Yong Zhang
Xingxing Wei
Baoyuan Wu
Ke Ma
Jue Wang
Xiaochun Cao
AAML
23
26
0
01 Apr 2023
SIO: Synthetic In-Distribution Data Benefits Out-of-Distribution Detection
Jingyang Zhang
Nathan Inkawhich
Randolph Linderman
R. Luley
Yiran Chen
H. Li
OODD
16
1
0
25 Mar 2023
Improved Adversarial Training Through Adaptive Instance-wise Loss Smoothing
Lin Li
Michael W. Spratling
AAML
64
4
0
24 Mar 2023
An Extended Study of Human-like Behavior under Adversarial Training
Paul Gavrikov
J. Keuper
M. Keuper
AAML
28
9
0
22 Mar 2023
TWINS: A Fine-Tuning Framework for Improved Transferability of Adversarial Robustness and Generalization
Ziquan Liu
Yi Tian Xu
Xiangyang Ji
Antoni B. Chan
AAML
24
17
0
20 Mar 2023
Randomized Adversarial Training via Taylor Expansion
Gao Jin
Xinping Yi
Dengyu Wu
Ronghui Mu
Xiaowei Huang
AAML
41
34
0
19 Mar 2023
It Is All About Data: A Survey on the Effects of Data on Adversarial Robustness
Peiyu Xiong
Michael W. Tegegn
Jaskeerat Singh Sarin
Shubhraneel Pal
Julia Rubin
SILM
AAML
32
8
0
17 Mar 2023
Robust Evaluation of Diffusion-Based Adversarial Purification
M. Lee
Dongwoo Kim
34
53
0
16 Mar 2023
Spawrious: A Benchmark for Fine Control of Spurious Correlation Biases
Aengus Lynch
G. Dovonon
Jean Kaddour
Ricardo M. A. Silva
189
30
0
09 Mar 2023
Revisiting Adversarial Training for ImageNet: Architectures, Training and Generalization across Threat Models
Naman D. Singh
Francesco Croce
Matthias Hein
OOD
39
62
0
03 Mar 2023
MultiRobustBench: Benchmarking Robustness Against Multiple Attacks
Sihui Dai
Saeed Mahloujifar
Chong Xiang
Vikash Sehwag
Pin-Yu Chen
Prateek Mittal
AAML
OOD
23
7
0
21 Feb 2023
Characterizing the Optimal 0-1 Loss for Multi-class Classification with a Test-time Attacker
Sihui Dai
Wen-Luan Ding
A. Bhagoji
Daniel Cullina
Ben Y. Zhao
Haitao Zheng
Prateek Mittal
AAML
27
2
0
21 Feb 2023
Seasoning Model Soups for Robustness to Adversarial and Natural Distribution Shifts
Francesco Croce
Sylvestre-Alvise Rebuffi
Evan Shelhamer
Sven Gowal
AAML
34
17
0
20 Feb 2023
Better Diffusion Models Further Improve Adversarial Training
Zekai Wang
Tianyu Pang
Chao Du
Min-Bin Lin
Weiwei Liu
Shuicheng Yan
DiffM
24
208
0
09 Feb 2023
Exploring and Exploiting Decision Boundary Dynamics for Adversarial Robustness
Yuancheng Xu
Yanchao Sun
Micah Goldblum
Tom Goldstein
Furong Huang
AAML
23
37
0
06 Feb 2023
GAT: Guided Adversarial Training with Pareto-optimal Auxiliary Tasks
Salah Ghamizi
Jingfeng Zhang
Maxime Cordy
Mike Papadakis
Masashi Sugiyama
Yves Le Traon
AAML
19
2
0
06 Feb 2023
Leaving Reality to Imagination: Robust Classification via Generated Datasets
Hritik Bansal
Aditya Grover
OOD
44
87
0
05 Feb 2023
Generalized Uncertainty of Deep Neural Networks: Taxonomy and Applications
Chengyu Dong
OOD
UQCV
BDL
AI4CE
36
0
0
02 Feb 2023
Uncovering Adversarial Risks of Test-Time Adaptation
Tong Wu
Feiran Jia
Xiangyu Qi
Jiachen T. Wang
Vikash Sehwag
Saeed Mahloujifar
Prateek Mittal
AAML
TTA
29
9
0
29 Jan 2023
Improving the Accuracy-Robustness Trade-Off of Classifiers via Adaptive Smoothing
Yatong Bai
Brendon G. Anderson
Aerin Kim
Somayeh Sojoudi
AAML
30
18
0
29 Jan 2023
Unlocking Deterministic Robustness Certification on ImageNet
Kaiqin Hu
Andy Zou
Zifan Wang
Klas Leino
Matt Fredrikson
OOD
21
12
0
29 Jan 2023
Data Augmentation Alone Can Improve Adversarial Training
Lin Li
Michael W. Spratling
16
50
0
24 Jan 2023
Provable Unrestricted Adversarial Training without Compromise with Generalizability
Lili Zhang
Ning Yang
Yanchao Sun
Philip S. Yu
AAML
22
2
0
22 Jan 2023
Revisiting Residual Networks for Adversarial Robustness: An Architectural Perspective
Shihua Huang
Zhichao Lu
Kalyanmoy Deb
Vishnu Naresh Boddeti
OOD
19
41
0
21 Dec 2022
Alternating Objectives Generates Stronger PGD-Based Adversarial Attacks
Nikolaos Antoniou
Efthymios Georgiou
Alexandros Potamianos
AAML
29
5
0
15 Dec 2022
Generative Robust Classification
Xuwang Yin
TPM
30
0
0
14 Dec 2022
DISCO: Adversarial Defense with Local Implicit Functions
Chih-Hui Ho
Nuno Vasconcelos
AAML
21
38
0
11 Dec 2022
Multiple Perturbation Attack: Attack Pixelwise Under Different
ℓ
p
\ell_p
ℓ
p
-norms For Better Adversarial Performance
Ngoc N. Tran
Anh Tuan Bui
Dinh Q. Phung
Trung Le
AAML
21
1
0
05 Dec 2022
Recognizing Object by Components with Human Prior Knowledge Enhances Adversarial Robustness of Deep Neural Networks
Xiao-Li Li
Ziqi Wang
Bo-Wen Zhang
Gang Hua
Xiaolin Hu
29
25
0
04 Dec 2022
Improving Robust Generalization by Direct PAC-Bayesian Bound Minimization
Zifa Wang
Nan Ding
Tomer Levinboim
Xi Chen
Radu Soricut
AAML
35
5
0
22 Nov 2022
MORA: Improving Ensemble Robustness Evaluation with Model-Reweighing Attack
Yunrui Yu
Xitong Gao
Chengzhong Xu
AAML
28
8
0
15 Nov 2022
Efficient and Effective Augmentation Strategy for Adversarial Training
Sravanti Addepalli
Samyak Jain
R. Venkatesh Babu
AAML
62
58
0
27 Oct 2022
Nash Equilibria and Pitfalls of Adversarial Training in Adversarial Robustness Games
Maria-Florina Balcan
Rattana Pukdee
Pradeep Ravikumar
Hongyang R. Zhang
AAML
31
12
0
23 Oct 2022
Learning Sample Reweighting for Accuracy and Adversarial Robustness
Chester Holtz
Tsui-Wei Weng
Gal Mishne
OOD
28
4
0
20 Oct 2022
Palm up: Playing in the Latent Manifold for Unsupervised Pretraining
Hao Liu
Tom Zahavy
Volodymyr Mnih
Satinder Singh
SSL
38
7
0
19 Oct 2022
Effective Targeted Attacks for Adversarial Self-Supervised Learning
Minseon Kim
Hyeonjeong Ha
Sooel Son
Sung Ju Hwang
AAML
39
3
0
19 Oct 2022
Improving Adversarial Robustness by Contrastive Guided Diffusion Process
Yidong Ouyang
Liyan Xie
Guang Cheng
30
6
0
18 Oct 2022
Previous
1
2
3
4
Next