Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2110.04995
Cited By
The Skellam Mechanism for Differentially Private Federated Learning
11 October 2021
Naman Agarwal
Peter Kairouz
Ziyu Liu
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"The Skellam Mechanism for Differentially Private Federated Learning"
21 / 71 papers shown
Title
Differentially private partitioned variational inference
Mikko A. Heikkilä
Matthew Ashman
S. Swaroop
Richard Turner
Antti Honkela
FedML
30
2
0
23 Sep 2022
FedMR: Fedreated Learning via Model Recombination
Ming Hu
Zhihao Yue
Zhiwei Ling
Xian Wei
Mingsong Chen
FedML
16
0
0
16 Aug 2022
The Poisson binomial mechanism for secure and private federated learning
Wei-Ning Chen
Ayfer Özgür
Peter Kairouz
FedML
16
2
0
09 Jul 2022
Pisces: Efficient Federated Learning via Guided Asynchronous Training
Zhifeng Jiang
Wei Wang
Baochun Li
Bo-wen Li
FedML
27
24
0
18 Jun 2022
On Privacy and Personalization in Cross-Silo Federated Learning
Ziyu Liu
Shengyuan Hu
Zhiwei Steven Wu
Virginia Smith
FedML
22
52
0
16 Jun 2022
Brownian Noise Reduction: Maximizing Privacy Subject to Accuracy Constraints
Justin Whitehouse
Zhiwei Steven Wu
Aaditya Ramdas
Ryan M. Rogers
11
9
0
15 Jun 2022
Distributed Differential Privacy in Multi-Armed Bandits
Sayak Ray Chowdhury
Xingyu Zhou
27
12
0
12 Jun 2022
Privacy Amplification via Shuffled Check-Ins
Seng Pei Liew
Satoshi Hasegawa
Tsubasa Takahashi
FedML
29
0
0
07 Jun 2022
FedEntropy: Efficient Device Grouping for Federated Learning Using Maximum Entropy Judgment
Zhiwei Ling
Zhihao Yue
Jun Xia
Ming Hu
Ting Wang
Mingsong Chen
FedML
26
8
0
24 May 2022
Protecting Data from all Parties: Combining FHE and DP in Federated Learning
Arnaud Grivet Sébert
Renaud Sirdey
Oana Stan
Cédric Gouy-Pailler
FedML
18
0
0
09 May 2022
Privacy-Preserving Aggregation in Federated Learning: A Survey
Ziyao Liu
Jiale Guo
Wenzhuo Yang
Jiani Fan
Kwok-Yan Lam
Jun Zhao
FedML
32
87
0
31 Mar 2022
Privacy-Aware Compression for Federated Data Analysis
Kamalika Chaudhuri
Chuan Guo
Michael G. Rabbat
FedML
27
27
0
15 Mar 2022
The Fundamental Price of Secure Aggregation in Differentially Private Federated Learning
Wei-Ning Chen
Christopher A. Choquette-Choo
Peter Kairouz
A. Suresh
FedML
39
63
0
07 Mar 2022
Pure Differential Privacy from Secure Intermediaries
Albert Cheu
Chao Yan
FedML
25
9
0
19 Dec 2021
When the Curious Abandon Honesty: Federated Learning Is Not Private
Franziska Boenisch
Adam Dziedzic
R. Schuster
Ali Shahin Shamsabadi
Ilia Shumailov
Nicolas Papernot
FedML
AAML
69
181
0
06 Dec 2021
Eluding Secure Aggregation in Federated Learning via Model Inconsistency
Dario Pasquini
Danilo Francati
G. Ateniese
FedML
28
101
0
14 Nov 2021
Towards Sparse Federated Analytics: Location Heatmaps under Distributed Differential Privacy with Secure Aggregation
Eugene Bagdasaryan
Peter Kairouz
S. Mellem
Adria Gascon
Kallista A. Bonawitz
D. Estrin
Marco Gruteser
21
28
0
03 Nov 2021
Practical and Private (Deep) Learning without Sampling or Shuffling
Peter Kairouz
Brendan McMahan
Shuang Song
Om Thakkar
Abhradeep Thakurta
Zheng Xu
FedML
182
154
0
26 Feb 2021
Emerging Trends in Federated Learning: From Model Fusion to Federated X Learning
Shaoxiong Ji
Yue Tan
Teemu Saravirta
Zhiqin Yang
Yixin Liu
Lauri Vasankari
Shirui Pan
Guodong Long
A. Walid
FedML
37
76
0
25 Feb 2021
An Accurate, Scalable and Verifiable Protocol for Federated Differentially Private Averaging
C. Sabater
A. Bellet
J. Ramon
FedML
21
18
0
12 Jun 2020
Device Heterogeneity in Federated Learning: A Superquantile Approach
Yassine Laguel
Krishna Pillutla
J. Malick
Zaïd Harchaoui
FedML
40
22
0
25 Feb 2020
Previous
1
2