Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2110.04995
Cited By
The Skellam Mechanism for Differentially Private Federated Learning
11 October 2021
Naman Agarwal
Peter Kairouz
Ziyu Liu
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"The Skellam Mechanism for Differentially Private Federated Learning"
50 / 71 papers shown
Title
VDDP: Verifiable Distributed Differential Privacy under the Client-Server-Verifier Setup
Haochen Sun
Xi He
43
0
0
30 Apr 2025
Infinitely Divisible Noise for Differential Privacy: Nearly Optimal Error in the High
ε
\varepsilon
ε
Regime
Charlie Harrison
Pasin Manurangsi
26
0
0
07 Apr 2025
Random signed measures
Riccardo Passeggeri
64
0
0
19 Nov 2024
Secure Stateful Aggregation: A Practical Protocol with Applications in Differentially-Private Federated Learning
Marshall Ball
James Bell-Clark
Adria Gascon
Peter Kairouz
Sewoong Oh
Zhiye Xie
FedML
36
0
0
15 Oct 2024
Federated Learning in Practice: Reflections and Projections
Katharine Daly
Hubert Eichner
Peter Kairouz
H. B. McMahan
Daniel Ramage
Zheng Xu
FedML
53
5
0
11 Oct 2024
Calibrating Noise for Group Privacy in Subsampled Mechanisms
Yangfan Jiang
Xinjian Luo
Yin Yang
Xiaokui Xiao
36
2
0
19 Aug 2024
Random Gradient Masking as a Defensive Measure to Deep Leakage in Federated Learning
Joon Kim
Sejin Park
AAML
FedML
40
1
0
15 Aug 2024
Universally Harmonizing Differential Privacy Mechanisms for Federated Learning: Boosting Accuracy and Convergence
Shuya Feng
Meisam Mohammady
Hanbin Hong
Shenao Yan
Ashish Kundu
Binghui Wang
Yuan Hong
FedML
44
3
0
20 Jul 2024
Correlated Privacy Mechanisms for Differentially Private Distributed Mean Estimation
Sajani Vithana
V. Cadambe
Flavio du Pin Calmon
Haewon Jeong
FedML
47
1
0
03 Jul 2024
Towards Efficient and Scalable Training of Differentially Private Deep Learning
Sebastian Rodriguez Beltran
Marlon Tobaben
Niki Loppi
Antti Honkela
34
0
0
25 Jun 2024
PrE-Text: Training Language Models on Private Federated Data in the Age of LLMs
Charlie Hou
Akshat Shrivastava
Hongyuan Zhan
Rylan Conway
Trang Le
Adithya Sagar
Giulia Fanti
Daniel Lazar
36
8
0
05 Jun 2024
Data Quality in Edge Machine Learning: A State-of-the-Art Survey
M. D. Belgoumri
Mohamed Reda Bouadjenek
Sunil Aryal
Hakim Hacid
41
1
0
01 Jun 2024
Privacy-Aware Randomized Quantization via Linear Programming
Zhongteng Cai
Xueru Zhang
Mohammad Mahdi Khalili
46
2
0
01 Jun 2024
FedSheafHN: Personalized Federated Learning on Graph-structured Data
Wenfei Liang
Yanan Zhao
Rui She
Yiming Li
Wee Peng Tay
FedML
56
0
0
25 May 2024
Differentially Private Federated Learning without Noise Addition: When is it Possible?
Jiang Zhang
Konstantinos Psounis
FedML
53
0
0
06 May 2024
The Privacy Power of Correlated Noise in Decentralized Learning
Youssef Allouah
Anastasia Koloskova
Aymane El Firdoussi
Martin Jaggi
R. Guerraoui
31
4
0
02 May 2024
Improved Communication-Privacy Trade-offs in
L
2
L_2
L
2
Mean Estimation under Streaming Differential Privacy
Wei-Ning Chen
Berivan Isik
Peter Kairouz
Albert No
Sewoong Oh
Zheng Xu
57
3
0
02 May 2024
Confidential Federated Computations
Hubert Eichner
Daniel Ramage
Kallista A. Bonawitz
Dzmitry Huba
Tiziano Santoro
...
Albert Cheu
Katharine Daly
Adria Gascon
Marco Gruteser
Brendan McMahan
48
2
0
16 Apr 2024
Privacy Amplification for the Gaussian Mechanism via Bounded Support
Shengyuan Hu
Saeed Mahloujifar
Virginia Smith
Kamalika Chaudhuri
Chuan Guo
FedML
38
1
0
07 Mar 2024
Uncertainty-Based Extensible Codebook for Discrete Federated Learning in Heterogeneous Data Silos
Tianyi Zhang
Yu Cao
Dianbo Liu
FedML
21
0
0
29 Feb 2024
TernaryVote: Differentially Private, Communication Efficient, and Byzantine Resilient Distributed Optimization on Heterogeneous Data
Richeng Jin
Yujie Gu
Kai Yue
Xiaofan He
Zhaoyang Zhang
Huaiyu Dai
FedML
20
0
0
16 Feb 2024
Decomposable Submodular Maximization in Federated Setting
Akbar Rafiey
FedML
30
1
0
31 Jan 2024
Lotto: Secure Participant Selection against Adversarial Servers in Federated Learning
Zhifeng Jiang
Peng Ye
Shiqi He
Wei Wang
Ruichuan Chen
Bo Li
31
2
0
05 Jan 2024
Layered Randomized Quantization for Communication-Efficient and Privacy-Preserving Distributed Learning
Guangfeng Yan
Tan Li
Tian-Shing Lan
Kui Wu
Linqi Song
19
6
0
12 Dec 2023
FP-Fed: Privacy-Preserving Federated Detection of Browser Fingerprinting
Meenatchi Sundaram Muthu Selva Annamalai
Igor Bilogrevic
Emiliano De Cristofaro
40
1
0
28 Nov 2023
Cross-Silo Federated Learning Across Divergent Domains with Iterative Parameter Alignment
Matt Gorbett
Hossein Shirazi
Indrakshi Ray
FedML
36
2
0
08 Nov 2023
Federated Experiment Design under Distributed Differential Privacy
Wei-Ning Chen
Graham Cormode
Akash Bharadwaj
Peter Romov
Ayfer Özgür
FedML
31
2
0
07 Nov 2023
ULDP-FL: Federated Learning with Across Silo User-Level Differential Privacy
Fumiyuki Kato
Li Xiong
Shun Takagi
Yang Cao
Masatoshi Yoshikawa
FedML
22
3
0
23 Aug 2023
Compressed Private Aggregation for Scalable and Robust Federated Learning over Massive Networks
Natalie Lang
Nir Shlezinger
Rafael G. L. DÓliveira
S. E. Rouayheb
FedML
75
4
0
01 Aug 2023
Private Federated Learning with Autotuned Compression
Enayat Ullah
Christopher A. Choquette-Choo
Peter Kairouz
Sewoong Oh
FedML
15
6
0
20 Jul 2023
Private Federated Learning in Gboard
Yuanbo Zhang
Daniel Ramage
Zheng Xu
Yanxiang Zhang
Shumin Zhai
Peter Kairouz
FedML
30
7
0
26 Jun 2023
Randomized Quantization is All You Need for Differential Privacy in Federated Learning
Yeojoon Youn
Zihao Hu
Juba Ziani
Jacob D. Abernethy
FedML
24
21
0
20 Jun 2023
FedCIP: Federated Client Intellectual Property Protection with Traitor Tracking
Junchuan Liang
Rong Wang
FedML
22
11
0
02 Jun 2023
Federated Learning of Gboard Language Models with Differential Privacy
Zheng Xu
Yanxiang Zhang
Galen Andrew
Christopher A. Choquette-Choo
Peter Kairouz
H. B. McMahan
Jesse Rosenstock
Yuanbo Zhang
FedML
42
77
0
29 May 2023
Is Aggregation the Only Choice? Federated Learning via Layer-wise Model Recombination
Ming Hu
Zhihao Yue
Zhiwei Ling
Cheng Chen
Yihao Huang
Xian Wei
Xiang Lian
Yang Liu
Mingsong Chen
FedML
19
8
0
18 May 2023
Practical Differentially Private and Byzantine-resilient Federated Learning
Zihang Xiang
Tianhao Wang
Wanyu Lin
Di Wang
FedML
36
21
0
15 Apr 2023
Privacy Amplification via Compression: Achieving the Optimal Privacy-Accuracy-Communication Trade-off in Distributed Mean Estimation
Wei-Ning Chen
Danni Song
Ayfer Özgür
Peter Kairouz
FedML
28
25
0
04 Apr 2023
How to DP-fy ML: A Practical Guide to Machine Learning with Differential Privacy
Natalia Ponomareva
Hussein Hazimeh
Alexey Kurakin
Zheng Xu
Carson E. Denison
H. B. McMahan
Sergei Vassilvitskii
Steve Chien
Abhradeep Thakurta
96
167
0
01 Mar 2023
Breaking the Communication-Privacy-Accuracy Tradeoff with
f
f
f
-Differential Privacy
Richeng Jin
Z. Su
C. Zhong
Zhaoyang Zhang
Tony Q. S. Quek
H. Dai
FedML
29
2
0
19 Feb 2023
Balancing Privacy Protection and Interpretability in Federated Learning
Zhe Li
Honglong Chen
Zhichen Ni
Huajie Shao
FedML
16
8
0
16 Feb 2023
z
z
z
-SignFedAvg: A Unified Stochastic Sign-based Compression for Federated Learning
Zhiwei Tang
Yanmeng Wang
Tsung-Hui Chang
FedML
21
14
0
06 Feb 2023
Differentially Private Natural Language Models: Recent Advances and Future Directions
Lijie Hu
Ivan Habernal
Lei Shen
Di Wang
AAML
30
18
0
22 Jan 2023
Reconstructing Individual Data Points in Federated Learning Hardened with Differential Privacy and Secure Aggregation
Franziska Boenisch
Adam Dziedzic
R. Schuster
Ali Shahin Shamsabadi
Ilia Shumailov
Nicolas Papernot
FedML
17
20
0
09 Jan 2023
Recent Advances on Federated Learning: A Systematic Survey
Bingyan Liu
Nuoyan Lv
Yuanchun Guo
Yawen Li
FedML
60
78
0
03 Jan 2023
Skellam Mixture Mechanism: a Novel Approach to Federated Learning with Differential Privacy
Ergute Bao
Yizheng Zhu
X. Xiao
Xuming Hu
Beng Chin Ooi
B. Tan
Khin Mi Mi Aung
FedML
31
18
0
08 Dec 2022
Privacy-Aware Compression for Federated Learning Through Numerical Mechanism Design
Chuan Guo
Kamalika Chaudhuri
Pierre Stock
Michael G. Rabbat
FedML
33
7
0
08 Nov 2022
Federated Calibration and Evaluation of Binary Classifiers
Graham Cormode
Igor L. Markov
FedML
33
4
0
22 Oct 2022
Federated Boosted Decision Trees with Differential Privacy
Samuel Maddock
Graham Cormode
Tianhao Wang
Carsten Maple
S. Jha
FedML
29
29
0
06 Oct 2022
Sparse Random Networks for Communication-Efficient Federated Learning
Berivan Isik
Francesco Pase
Deniz Gunduz
Tsachy Weissman
M. Zorzi
FedML
70
52
0
30 Sep 2022
Dordis: Efficient Federated Learning with Dropout-Resilient Differential Privacy
Zhifeng Jiang
Wei Wang
Ruichuan Chen
43
6
0
26 Sep 2022
1
2
Next