Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2110.04158
Cited By
Explainability-Aware One Point Attack for Point Cloud Neural Networks
8 October 2021
Hanxiao Tan
Helena Kotthaus
3DPC
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Explainability-Aware One Point Attack for Point Cloud Neural Networks"
45 / 45 papers shown
Title
Rethinking Network Design and Local Geometry in Point Cloud: A Simple Residual MLP Framework
Xu Ma
Can Qin
Haoxuan You
Haoxi Ran
Y. Fu
3DPC
45
594
0
15 Feb 2022
Surrogate Model-Based Explainability Methods for Point Cloud NNs
Hanxiao Tan
Helena Kotthaus
3DPC
40
28
0
28 Jul 2021
3D Adversarial Attacks Beyond Point Cloud
Jinlai Zhang
Lyujie Chen
Binbin Liu
Bojun Ouyang
Qizhi Xie
Jihong Zhu
Weiming Li
Yanmei Meng
3DPC
55
39
0
25 Apr 2021
PointBA: Towards Backdoor Attacks in 3D Point Cloud
Xinke Li
Zhirui Chen
Yue Zhao
Zekun Tong
Yabang Zhao
A. Lim
Qiufeng Wang
3DPC
AAML
111
52
0
30 Mar 2021
Semantics and explanation: why counterfactual explanations produce adversarial examples in deep neural networks
Kieran Browne
Ben Swift
AAML
GAN
45
30
0
18 Dec 2020
On Adversarial Robustness of 3D Point Cloud Classification under Adaptive Attacks
Jiachen Sun
Karl Koenig
Yulong Cao
Qi Alfred Chen
Z. Morley Mao
3DPC
56
20
0
24 Nov 2020
A Survey on the Explainability of Supervised Machine Learning
Nadia Burkart
Marco F. Huber
FaML
XAI
48
773
0
16 Nov 2020
LG-GAN: Label Guided Adversarial Network for Flexible Targeted Attack of Point Cloud-based Deep Networks
Hang Zhou
Dongdong Chen
Jing Liao
Weiming Zhang
Kejiang Chen
Xiaoyi Dong
Kunlin Liu
G. Hua
Nenghai Yu
3DPC
110
103
0
01 Nov 2020
Minimal Adversarial Examples for Deep Learning on 3D Point Clouds
Jaeyeon Kim
Binh-Son Hua
D. Nguyen
Sai-Kit Yeung
3DPC
81
55
0
27 Aug 2020
3D Point Cloud Feature Explanations Using Gradient-Based Methods
A. Gupta
Simon Watson
Hujun Yin
3DPC
33
28
0
09 Jun 2020
Good Counterfactuals and Where to Find Them: A Case-Based Technique for Generating Counterfactuals for Explainable AI (XAI)
Mark T. Keane
Barry Smyth
CML
66
146
0
26 May 2020
ShapeAdv: Generating Shape-Aware Adversarial 3D Point Clouds
Kibok Lee
Zhuoyuan Chen
Xinchen Yan
R. Urtasun
Ersin Yumer
3DPC
48
32
0
24 May 2020
Multi-Objective Counterfactual Explanations
Susanne Dandl
Christoph Molnar
Martin Binder
B. Bischl
57
258
0
23 Apr 2020
On Isometry Robustness of Deep 3D Point Cloud Models under Adversarial Attacks
Yue Zhao
Yuwei Wu
Caihua Chen
A. Lim
3DPC
64
72
0
27 Feb 2020
AdvPC: Transferable Adversarial Perturbations on 3D Point Clouds
Abdullah Hamdi
Sara Rojas
Ali K. Thabet
Guohao Li
AAML
3DPC
73
129
0
01 Dec 2019
Understanding Neural Networks via Feature Visualization: A survey
Anh Nguyen
J. Yosinski
Jeff Clune
FAtt
63
161
0
18 Apr 2019
Counterfactual Visual Explanations
Yash Goyal
Ziyan Wu
Jan Ernst
Dhruv Batra
Devi Parikh
Stefan Lee
CML
75
510
0
16 Apr 2019
Robustness of 3D Deep Learning in an Adversarial Setting
Matthew Wicker
Marta Kwiatkowska
3DPC
44
98
0
01 Apr 2019
Adversarial Attack and Defense on Point Sets
Jiancheng Yang
Qiang Zhang
Rongyao Fang
Bingbing Ni
Jinxian Liu
Qi Tian
3DPC
58
125
0
28 Feb 2019
Extending Adversarial Attacks and Defenses to Deep 3D Point Cloud Classifiers
Daniel Liu
Ronald Yu
Hao Su
3DPC
77
169
0
10 Jan 2019
PointCloud Saliency Maps
Tianhang Zheng
Changyou Chen
Junsong Yuan
Bo Li
K. Ren
3DPC
56
214
0
28 Nov 2018
Sanity Checks for Saliency Maps
Julius Adebayo
Justin Gilmer
M. Muelly
Ian Goodfellow
Moritz Hardt
Been Kim
FAtt
AAML
XAI
123
1,963
0
08 Oct 2018
Generating 3D Adversarial Point Clouds
Chong Xiang
C. Qi
Yue Liu
3DPC
106
291
0
19 Sep 2018
Dynamic Graph CNN for Learning on Point Clouds
Yue Wang
Yongbin Sun
Ziwei Liu
Sanjay E. Sarma
M. Bronstein
Justin Solomon
GNN
3DPC
255
6,132
0
24 Jan 2018
Threat of Adversarial Attacks on Deep Learning in Computer Vision: A Survey
Naveed Akhtar
Ajmal Mian
AAML
89
1,867
0
02 Jan 2018
One pixel attack for fooling deep neural networks
Jiawei Su
Danilo Vasconcellos Vargas
Kouichi Sakurai
AAML
117
2,323
0
24 Oct 2017
SmoothGrad: removing noise by adding noise
D. Smilkov
Nikhil Thorat
Been Kim
F. Viégas
Martin Wattenberg
FAtt
ODL
199
2,221
0
12 Jun 2017
PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space
C. Qi
L. Yi
Hao Su
Leonidas Guibas
3DPC
3DV
331
11,062
0
07 Jun 2017
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
1.1K
21,815
0
22 May 2017
Learning Important Features Through Propagating Activation Differences
Avanti Shrikumar
Peyton Greenside
A. Kundaje
FAtt
188
3,869
0
10 Apr 2017
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OOD
FAtt
175
5,986
0
04 Mar 2017
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
C. Qi
Hao Su
Kaichun Mo
Leonidas Guibas
3DH
3DPC
3DV
PINN
465
14,264
0
02 Dec 2016
Gradients of Counterfactuals
Mukund Sundararajan
Ankur Taly
Qiqi Yan
FAtt
46
104
0
08 Nov 2016
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OOD
AAML
243
8,548
0
16 Aug 2016
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
517
5,893
0
08 Jul 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
1.1K
16,931
0
16 Feb 2016
Multifaceted Feature Visualization: Uncovering the Different Types of Features Learned By Each Neuron in Deep Neural Networks
Anh Totti Nguyen
J. Yosinski
Jeff Clune
54
329
0
11 Feb 2016
Practical Black-Box Attacks against Machine Learning
Nicolas Papernot
Patrick McDaniel
Ian Goodfellow
S. Jha
Z. Berkay Celik
A. Swami
MLAU
AAML
66
3,676
0
08 Feb 2016
ShapeNet: An Information-Rich 3D Model Repository
Angel X. Chang
Thomas Funkhouser
Leonidas Guibas
Pat Hanrahan
Qi-Xing Huang
...
Shuran Song
Hao Su
Jianxiong Xiao
L. Yi
Feng Yu
3DV
149
5,522
0
09 Dec 2015
DeepFool: a simple and accurate method to fool deep neural networks
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
P. Frossard
AAML
140
4,895
0
14 Nov 2015
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.6K
150,006
0
22 Dec 2014
Striving for Simplicity: The All Convolutional Net
Jost Tobias Springenberg
Alexey Dosovitskiy
Thomas Brox
Martin Riedmiller
FAtt
240
4,667
0
21 Dec 2014
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
250
19,017
0
20 Dec 2014
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
253
14,912
1
21 Dec 2013
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
FAtt
301
7,289
0
20 Dec 2013
1