ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.03760
  4. Cited By
Design Strategy Network: A deep hierarchical framework to represent
  generative design strategies in complex action spaces

Design Strategy Network: A deep hierarchical framework to represent generative design strategies in complex action spaces

7 October 2021
Ayush Raina
Jonathan Cagan
Christopher McComb
    AI4CE
ArXivPDFHTML

Papers citing "Design Strategy Network: A deep hierarchical framework to represent generative design strategies in complex action spaces"

11 / 11 papers shown
Title
In the Eye of the Beholder: Gaze and Actions in First Person Video
In the Eye of the Beholder: Gaze and Actions in First Person Video
Yin Li
Miao Liu
James M. Rehg
EgoV
117
70
0
31 May 2020
Dota 2 with Large Scale Deep Reinforcement Learning
Dota 2 with Large Scale Deep Reinforcement Learning
OpenAI OpenAI
:
Christopher Berner
Greg Brockman
Brooke Chan
...
Szymon Sidor
Ilya Sutskever
Jie Tang
Filip Wolski
Susan Zhang
GNN
VLM
CLL
AI4CE
LRM
92
1,811
0
13 Dec 2019
Towards Interpretable Reinforcement Learning Using Attention Augmented
  Agents
Towards Interpretable Reinforcement Learning Using Attention Augmented Agents
Alex Mott
Daniel Zoran
Mike Chrzanowski
Daan Wierstra
Danilo Jimenez Rezende
43
190
0
06 Jun 2019
Parametrized Deep Q-Networks Learning: Reinforcement Learning with
  Discrete-Continuous Hybrid Action Space
Parametrized Deep Q-Networks Learning: Reinforcement Learning with Discrete-Continuous Hybrid Action Space
Jiechao Xiong
Qing Wang
Zhuoran Yang
Peng Sun
Lei Han
Yang Zheng
Haobo Fu
Tong Zhang
Ji Liu
Han Liu
44
170
0
10 Oct 2018
Frustum PointNets for 3D Object Detection from RGB-D Data
Frustum PointNets for 3D Object Detection from RGB-D Data
C. Qi
Wen Liu
Chenxia Wu
Hao Su
Leonidas Guibas
3DPC
127
2,257
0
22 Nov 2017
Thinking Fast and Slow with Deep Learning and Tree Search
Thinking Fast and Slow with Deep Learning and Tree Search
Thomas W. Anthony
Zheng Tian
David Barber
78
387
0
23 May 2017
Generative Adversarial Imitation Learning
Generative Adversarial Imitation Learning
Jonathan Ho
Stefano Ermon
GAN
111
3,089
0
10 Jun 2016
Deep Reinforcement Learning in Parameterized Action Space
Deep Reinforcement Learning in Parameterized Action Space
Matthew J. Hausknecht
Peter Stone
43
307
0
13 Nov 2015
Continuous control with deep reinforcement learning
Continuous control with deep reinforcement learning
Timothy Lillicrap
Jonathan J. Hunt
Alexander Pritzel
N. Heess
Tom Erez
Yuval Tassa
David Silver
Daan Wierstra
191
13,174
0
09 Sep 2015
Striving for Simplicity: The All Convolutional Net
Striving for Simplicity: The All Convolutional Net
Jost Tobias Springenberg
Alexey Dosovitskiy
Thomas Brox
Martin Riedmiller
FAtt
174
4,653
0
21 Dec 2014
Recurrent Models of Visual Attention
Recurrent Models of Visual Attention
Volodymyr Mnih
N. Heess
Alex Graves
Koray Kavukcuoglu
VLM
110
3,645
0
24 Jun 2014
1