ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.03628
  4. Cited By
Boxhead: A Dataset for Learning Hierarchical Representations

Boxhead: A Dataset for Learning Hierarchical Representations

7 October 2021
Yukun Chen
Andrea Dittadi
Frederik Trauble
Stefan Bauer
Bernhard Schölkopf
    CML
ArXivPDFHTML

Papers citing "Boxhead: A Dataset for Learning Hierarchical Representations"

42 / 42 papers shown
Title
Generalization and Robustness Implications in Object-Centric Learning
Generalization and Robustness Implications in Object-Centric Learning
Andrea Dittadi
Samuele Papa
Michele De Vita
Bernhard Schölkopf
Ole Winther
Francesco Locatello
OCL
OOD
55
75
0
01 Jul 2021
Spatial Dependency Networks: Neural Layers for Improved Generative Image
  Modeling
Spatial Dependency Networks: Neural Layers for Improved Generative Image Modeling
DJordje Miladinović
Aleksandar Stanić
Stefan Bauer
Jürgen Schmidhuber
J. M. Buhmann
DRL
38
9
0
16 Mar 2021
Towards Causal Representation Learning
Towards Causal Representation Learning
Bernhard Schölkopf
Francesco Locatello
Stefan Bauer
Nan Rosemary Ke
Nal Kalchbrenner
Anirudh Goyal
Yoshua Bengio
OOD
CML
AI4CE
100
322
0
22 Feb 2021
Benchmarks, Algorithms, and Metrics for Hierarchical Disentanglement
Benchmarks, Algorithms, and Metrics for Hierarchical Disentanglement
A. Ross
Finale Doshi-Velez
DRL
53
13
0
09 Feb 2021
Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them
  on Images
Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on Images
R. Child
BDL
VLM
177
350
0
20 Nov 2020
On the Transfer of Disentangled Representations in Realistic Settings
On the Transfer of Disentangled Representations in Realistic Settings
Andrea Dittadi
Frederik Trauble
Francesco Locatello
M. Wuthrich
Vaibhav Agrawal
Ole Winther
Stefan Bauer
Bernhard Schölkopf
OOD
88
82
0
27 Oct 2020
A Sober Look at the Unsupervised Learning of Disentangled
  Representations and their Evaluation
A Sober Look at the Unsupervised Learning of Disentangled Representations and their Evaluation
Francesco Locatello
Stefan Bauer
Mario Lucic
Gunnar Rätsch
Sylvain Gelly
Bernhard Schölkopf
Olivier Bachem
OOD
57
69
0
27 Oct 2020
Hierarchical Relational Inference
Hierarchical Relational Inference
Aleksandar Stanić
Sjoerd van Steenkiste
Jürgen Schmidhuber
OCL
48
15
0
07 Oct 2020
S2RMs: Spatially Structured Recurrent Modules
S2RMs: Spatially Structured Recurrent Modules
Nasim Rahaman
Anirudh Goyal
Muhammad Waleed Gondal
M. Wuthrich
Stefan Bauer
Yash Sharma
Yoshua Bengio
Bernhard Schölkopf
40
14
0
13 Jul 2020
NVAE: A Deep Hierarchical Variational Autoencoder
NVAE: A Deep Hierarchical Variational Autoencoder
Arash Vahdat
Jan Kautz
BDL
67
908
0
08 Jul 2020
Learning Physical Graph Representations from Visual Scenes
Learning Physical Graph Representations from Visual Scenes
Daniel M. Bear
Chaofei Fan
Damian Mrowca
Yunzhu Li
S. Alter
...
Jeremy Schwartz
Li Fei-Fei
Jiajun Wu
J. Tenenbaum
Daniel L. K. Yamins
SSL
GNN
SSeg
AI4CE
77
79
0
22 Jun 2020
On Disentangled Representations Learned From Correlated Data
On Disentangled Representations Learned From Correlated Data
Frederik Trauble
Elliot Creager
Niki Kilbertus
Francesco Locatello
Andrea Dittadi
Anirudh Goyal
Bernhard Schölkopf
Stefan Bauer
OOD
CML
59
117
0
14 Jun 2020
Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from
  a Single RGB Image
Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from a Single RGB Image
Despoina Paschalidou
Luc van Gool
Andreas Geiger
3DV
OCL
57
108
0
02 Apr 2020
Progressive Learning and Disentanglement of Hierarchical Representations
Progressive Learning and Disentanglement of Hierarchical Representations
Zhiyuan Li
J. Murkute
P. Gyawali
Linwei Wang
DRL
36
40
0
24 Feb 2020
Weakly-Supervised Disentanglement Without Compromises
Weakly-Supervised Disentanglement Without Compromises
Francesco Locatello
Ben Poole
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
Michael Tschannen
CoGe
OOD
DRL
220
316
0
07 Feb 2020
Causality for Machine Learning
Causality for Machine Learning
Bernhard Schölkopf
CML
AI4CE
LRM
78
461
0
24 Nov 2019
Weakly Supervised Disentanglement with Guarantees
Weakly Supervised Disentanglement with Guarantees
Rui Shu
Yining Chen
Abhishek Kumar
Stefano Ermon
Ben Poole
CoGe
DRL
106
137
0
22 Oct 2019
Recurrent Independent Mechanisms
Recurrent Independent Mechanisms
Anirudh Goyal
Alex Lamb
Jordan Hoffmann
Shagun Sodhani
Sergey Levine
Yoshua Bengio
Bernhard Schölkopf
76
337
0
24 Sep 2019
Disentangled State Space Representations
Disentangled State Space Representations
Ðorðe Miladinovic
Muhammad Waleed Gondal
Bernhard Schölkopf
J. M. Buhmann
Stefan Bauer
DRL
47
30
0
07 Jun 2019
Flexibly Fair Representation Learning by Disentanglement
Flexibly Fair Representation Learning by Disentanglement
Elliot Creager
David Madras
J. Jacobsen
Marissa A. Weis
Kevin Swersky
T. Pitassi
R. Zemel
FaML
OOD
153
333
0
06 Jun 2019
On the Fairness of Disentangled Representations
On the Fairness of Disentangled Representations
Francesco Locatello
G. Abbati
Tom Rainforth
Stefan Bauer
Bernhard Schölkopf
Olivier Bachem
FaML
DRL
64
226
0
31 May 2019
Are Disentangled Representations Helpful for Abstract Visual Reasoning?
Are Disentangled Representations Helpful for Abstract Visual Reasoning?
Sjoerd van Steenkiste
Francesco Locatello
Jürgen Schmidhuber
Olivier Bachem
74
210
0
29 May 2019
Unsupervised Discovery of Parts, Structure, and Dynamics
Unsupervised Discovery of Parts, Structure, and Dynamics
Zhenjia Xu
Zhijian Liu
Chen Sun
Kevin Patrick Murphy
William T. Freeman
J. Tenenbaum
Jiajun Wu
OCL
61
61
0
12 Mar 2019
Multi-Object Representation Learning with Iterative Variational
  Inference
Multi-Object Representation Learning with Iterative Variational Inference
Klaus Greff
Raphael Lopez Kaufman
Rishabh Kabra
Nicholas Watters
Christopher P. Burgess
Daniel Zoran
Loic Matthey
M. Botvinick
Alexander Lerchner
OCL
SSL
98
509
0
01 Mar 2019
BIVA: A Very Deep Hierarchy of Latent Variables for Generative Modeling
BIVA: A Very Deep Hierarchy of Latent Variables for Generative Modeling
Lars Maaløe
Marco Fraccaro
Valentin Liévin
Ole Winther
BDL
DRL
50
214
0
06 Feb 2019
Spatial Broadcast Decoder: A Simple Architecture for Learning
  Disentangled Representations in VAEs
Spatial Broadcast Decoder: A Simple Architecture for Learning Disentangled Representations in VAEs
Nicholas Watters
Loic Matthey
Christopher P. Burgess
Alexander Lerchner
CoGe
78
169
0
21 Jan 2019
Variational Autoencoders Pursue PCA Directions (by Accident)
Variational Autoencoders Pursue PCA Directions (by Accident)
Michal Rolínek
Dominik Zietlow
Georg Martius
OOD
DRL
61
151
0
17 Dec 2018
Challenging Common Assumptions in the Unsupervised Learning of
  Disentangled Representations
Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations
Francesco Locatello
Stefan Bauer
Mario Lucic
Gunnar Rätsch
Sylvain Gelly
Bernhard Schölkopf
Olivier Bachem
OOD
109
1,466
0
29 Nov 2018
Robustly Disentangled Causal Mechanisms: Validating Deep Representations
  for Interventional Robustness
Robustly Disentangled Causal Mechanisms: Validating Deep Representations for Interventional Robustness
Raphael Suter
Ðorðe Miladinovic
Bernhard Schölkopf
Stefan Bauer
CML
OOD
DRL
105
162
0
31 Oct 2018
SplineNets: Continuous Neural Decision Graphs
SplineNets: Continuous Neural Decision Graphs
Cem Keskin
Shahram Izadi
45
11
0
31 Oct 2018
Life-Long Disentangled Representation Learning with Cross-Domain Latent
  Homologies
Life-Long Disentangled Representation Learning with Cross-Domain Latent Homologies
Alessandro Achille
Tom Eccles
Loic Matthey
Christopher P. Burgess
Nicholas Watters
Alexander Lerchner
I. Higgins
BDL
63
119
0
20 Aug 2018
Understanding disentangling in $β$-VAE
Understanding disentangling in βββ-VAE
Christopher P. Burgess
I. Higgins
Arka Pal
Loic Matthey
Nicholas Watters
Guillaume Desjardins
Alexander Lerchner
CoGe
DRL
57
829
0
10 Apr 2018
Disentangling by Factorising
Disentangling by Factorising
Hyunjik Kim
A. Mnih
CoGe
OOD
62
1,346
0
16 Feb 2018
Isolating Sources of Disentanglement in Variational Autoencoders
Isolating Sources of Disentanglement in Variational Autoencoders
T. Chen
Xuechen Li
Roger C. Grosse
David Duvenaud
DRL
49
447
0
14 Feb 2018
Open3D: A Modern Library for 3D Data Processing
Open3D: A Modern Library for 3D Data Processing
Qian-Yi Zhou
Jaesik Park
V. Koltun
PINN
AI4CE
55
1,611
0
30 Jan 2018
Variational Inference of Disentangled Latent Concepts from Unlabeled
  Observations
Variational Inference of Disentangled Latent Concepts from Unlabeled Observations
Abhishek Kumar
P. Sattigeri
Avinash Balakrishnan
BDL
DRL
76
523
0
02 Nov 2017
Causal Consistency of Structural Equation Models
Causal Consistency of Structural Equation Models
Paul Kishan Rubenstein
S. Weichwald
Stephan Bongers
Joris M. Mooij
Dominik Janzing
Moritz Grosse-Wentrup
Bernhard Schölkopf
CML
75
127
0
04 Jul 2017
Poincaré Embeddings for Learning Hierarchical Representations
Poincaré Embeddings for Learning Hierarchical Representations
Maximilian Nickel
Douwe Kiela
79
1,301
0
22 May 2017
InfoGAN: Interpretable Representation Learning by Information Maximizing
  Generative Adversarial Nets
InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
Xi Chen
Yan Duan
Rein Houthooft
John Schulman
Ilya Sutskever
Pieter Abbeel
GAN
155
4,232
0
12 Jun 2016
Ladder Variational Autoencoders
Ladder Variational Autoencoders
C. Sønderby
T. Raiko
Lars Maaløe
Søren Kaae Sønderby
Ole Winther
BDL
DRL
95
911
0
06 Feb 2016
Deep Learning Face Attributes in the Wild
Deep Learning Face Attributes in the Wild
Ziwei Liu
Ping Luo
Xiaogang Wang
Xiaoou Tang
CVBM
224
8,391
0
28 Nov 2014
Representation Learning: A Review and New Perspectives
Representation Learning: A Review and New Perspectives
Yoshua Bengio
Aaron Courville
Pascal Vincent
OOD
SSL
213
12,422
0
24 Jun 2012
1