ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.03405
  4. Cited By
Joint calibration and mapping of satellite altimetry data using
  trainable variational models

Joint calibration and mapping of satellite altimetry data using trainable variational models

7 October 2021
Q. Febvre
Ronan Fablet
Julien Le Sommer
C. Ubelmann
ArXiv (abs)PDFHTML

Papers citing "Joint calibration and mapping of satellite altimetry data using trainable variational models"

5 / 5 papers shown
Title
Attention-based Convolutional Autoencoders for 3D-Variational Data
  Assimilation
Attention-based Convolutional Autoencoders for 3D-Variational Data Assimilation
Julian Mack
Rossella Arcucci
Miguel Molina-Solana
Yi-Ke Guo
3DPC
82
35
0
06 Jan 2021
An Image is Worth 16x16 Words: Transformers for Image Recognition at
  Scale
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
Alexey Dosovitskiy
Lucas Beyer
Alexander Kolesnikov
Dirk Weissenborn
Xiaohua Zhai
...
Matthias Minderer
G. Heigold
Sylvain Gelly
Jakob Uszkoreit
N. Houlsby
ViT
682
41,483
0
22 Oct 2020
Learning Variational Data Assimilation Models and Solvers
Learning Variational Data Assimilation Models and Solvers
Ronan Fablet
Bertrand Chapron
Lucas Drumetz
É. Mémin
O. Pannekoucke
F. Rousseau
63
71
0
25 Jul 2020
Combining data assimilation and machine learning to emulate a dynamical
  model from sparse and noisy observations: a case study with the Lorenz 96
  model
Combining data assimilation and machine learning to emulate a dynamical model from sparse and noisy observations: a case study with the Lorenz 96 model
J. Brajard
A. Carrassi
Marc Bocquet
Laurent Bertino
69
226
0
06 Jan 2020
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.1K
150,364
0
22 Dec 2014
1