ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.03091
  4. Cited By
Improving Fractal Pre-training

Improving Fractal Pre-training

6 October 2021
Connor Anderson
Ryan Farrell
ArXivPDFHTML

Papers citing "Improving Fractal Pre-training"

21 / 21 papers shown
Title
VibrantLeaves: A principled parametric image generator for training deep restoration models
VibrantLeaves: A principled parametric image generator for training deep restoration models
Raphaël Achddou
Y. Gousseau
Saïd Ladjal
Sabine Süsstrunk
28
0
0
14 Apr 2025
Formula-Supervised Sound Event Detection: Pre-Training Without Real Data
Formula-Supervised Sound Event Detection: Pre-Training Without Real Data
Yuto Shibata
Keitaro Tanaka
Yoshiaki Bando
Keisuke Imoto
Hirokatsu Kataoka
Yoshimitsu Aoki
26
0
0
06 Apr 2025
Learning Image Fractals Using Chaotic Differentiable Point Splatting
Adarsh Djeacoumar
Felix Mujkanovic
Hans-Peter Seidel
Thomas Leimkuhler
36
0
0
24 Feb 2025
Learning Representation for Multitask learning through Self Supervised
  Auxiliary learning
Learning Representation for Multitask learning through Self Supervised Auxiliary learning
Seokwon Shin
Hyungrok Do
Youngdoo Son
SSL
26
1
0
25 Sep 2024
Scaling Backwards: Minimal Synthetic Pre-training?
Scaling Backwards: Minimal Synthetic Pre-training?
Ryo Nakamura
Ryu Tadokoro
Ryosuke Yamada
Tim Puhlfürß
Iro Laina
Christian Rupprecht
Walid Maalej
Rio Yokota
Hirokatsu Kataoka
DD
16
2
0
01 Aug 2024
Fractals as Pre-training Datasets for Anomaly Detection and Localization
Fractals as Pre-training Datasets for Anomaly Detection and Localization
C. Ugwu
S. Casarin
O. Lanz
32
0
0
11 May 2024
A Vision Check-up for Language Models
A Vision Check-up for Language Models
Pratyusha Sharma
Tamar Rott Shaham
Manel Baradad
Stephanie Fu
Adrian Rodriguez-Munoz
Shivam Duggal
Phillip Isola
Antonio Torralba
VLM
LRM
78
24
0
03 Jan 2024
IPMix: Label-Preserving Data Augmentation Method for Training Robust
  Classifiers
IPMix: Label-Preserving Data Augmentation Method for Training Robust Classifiers
Zhenglin Huang
Xianan Bao
Na Zhang
Qingqi Zhang
Xiaomei Tu
Biao Wu
Xi Yang
25
7
0
07 Oct 2023
Pre-training with Synthetic Data Helps Offline Reinforcement Learning
Pre-training with Synthetic Data Helps Offline Reinforcement Learning
Zecheng Wang
Che Wang
Zixuan Dong
Keith Ross
OffRL
30
5
0
01 Oct 2023
SegRCDB: Semantic Segmentation via Formula-Driven Supervised Learning
SegRCDB: Semantic Segmentation via Formula-Driven Supervised Learning
Risa Shinoda
Ryo Hayamizu
Kodai Nakashima
Nakamasa Inoue
Rio Yokota
Hirokatsu Kataoka
VLM
26
8
0
29 Sep 2023
Pre-training Vision Transformers with Very Limited Synthesized Images
Pre-training Vision Transformers with Very Limited Synthesized Images
Ryo Nakamura1
Hirokatsu Kataoka
Sora Takashima
Edgar Josafat Martinez-Noriega
Rio Yokota
Nakamasa Inoue
29
7
0
27 Jul 2023
Asynchronous Federated Continual Learning
Asynchronous Federated Continual Learning
Donald Shenaj
Marco Toldo
Alberto Rigon
Pietro Zanuttigh
FedML
CLL
18
34
0
07 Apr 2023
Learning Fractals by Gradient Descent
Learning Fractals by Gradient Descent
Cheng-Hao Tu
Hong-You Chen
David Carlyn
Wei-Lun Chao
11
2
0
14 Mar 2023
Visual Atoms: Pre-training Vision Transformers with Sinusoidal Waves
Visual Atoms: Pre-training Vision Transformers with Sinusoidal Waves
Sora Takashima
Ryo Hayamizu
Nakamasa Inoue
Hirokatsu Kataoka
Rio Yokota
60
18
0
02 Mar 2023
FractalAD: A simple industrial anomaly detection method using fractal
  anomaly generation and backbone knowledge distillation
FractalAD: A simple industrial anomaly detection method using fractal anomaly generation and backbone knowledge distillation
X. Xia
Weijie Lv
Xing He
Nan Li
Chuanqi Liu
Ning Ding
29
1
0
30 Jan 2023
A Survey of Deep Learning for Mathematical Reasoning
A Survey of Deep Learning for Mathematical Reasoning
Pan Lu
Liang Qiu
Wenhao Yu
Sean Welleck
Kai-Wei Chang
ReLM
LRM
32
137
0
20 Dec 2022
Procedural Image Programs for Representation Learning
Procedural Image Programs for Representation Learning
Manel Baradad
Chun-Fu
Jonas Wulff
Tongzhou Wang
Rogerio Feris
Antonio Torralba
Phillip Isola
13
18
0
29 Nov 2022
On the Importance and Applicability of Pre-Training for Federated
  Learning
On the Importance and Applicability of Pre-Training for Federated Learning
Hong-You Chen
Cheng-Hao Tu
Zi-hua Li
Hang Shen
Wei-Lun Chao
FedML
17
77
0
23 Jun 2022
Insights into Pre-training via Simpler Synthetic Tasks
Insights into Pre-training via Simpler Synthetic Tasks
Yuhuai Wu
Felix Li
Percy Liang
AIMat
24
20
0
21 Jun 2022
Replacing Labeled Real-image Datasets with Auto-generated Contours
Replacing Labeled Real-image Datasets with Auto-generated Contours
Hirokatsu Kataoka
Ryo Hayamizu
Ryosuke Yamada
Kodai Nakashima
Sora Takashima
Xinyu Zhang
Edgar Josafat Martinez-Noriega
Nakamasa Inoue
Rio Yokota
20
23
0
18 Jun 2022
Pre-training without Natural Images
Pre-training without Natural Images
Hirokatsu Kataoka
Kazushige Okayasu
Asato Matsumoto
Eisuke Yamagata
Ryosuke Yamada
Nakamasa Inoue
Akio Nakamura
Y. Satoh
79
116
0
21 Jan 2021
1