Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2110.02905
Cited By
Geometric and Physical Quantities Improve E(3) Equivariant Message Passing
6 October 2021
Johannes Brandstetter
Rob D. Hesselink
Elise van der Pol
Erik J. Bekkers
Max Welling
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Geometric and Physical Quantities Improve E(3) Equivariant Message Passing"
7 / 157 papers shown
Title
Boundary Graph Neural Networks for 3D Simulations
Andreas Mayr
Sebastian Lehner
A. Mayrhofer
C. Kloss
Sepp Hochreiter
Johannes Brandstetter
AI4CE
22
33
0
21 Jun 2021
Steerable Partial Differential Operators for Equivariant Neural Networks
Erik Jenner
Maurice Weiler
25
28
0
18 Jun 2021
Vector Neurons: A General Framework for SO(3)-Equivariant Networks
Congyue Deng
Or Litany
Yueqi Duan
A. Poulenard
Andrea Tagliasacchi
Leonidas J. Guibas
3DPC
125
317
0
25 Apr 2021
A Practical Method for Constructing Equivariant Multilayer Perceptrons for Arbitrary Matrix Groups
Marc Finzi
Max Welling
A. Wilson
79
186
0
19 Apr 2021
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
254
1,241
0
08 Jan 2021
The Open Catalyst 2020 (OC20) Dataset and Community Challenges
L. Chanussot
Abhishek Das
Siddharth Goyal
Thibaut Lavril
Muhammed Shuaibi
...
Brandon M. Wood
Junwoong Yoon
Devi Parikh
C. L. Zitnick
Zachary W. Ulissi
232
505
0
20 Oct 2020
Boosting Deep Neural Networks with Geometrical Prior Knowledge: A Survey
M. Rath
A. P. Condurache
ViT
AI4CE
37
9
0
30 Jun 2020
Previous
1
2
3
4