Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2110.01654
Cited By
Improved architectures and training algorithms for deep operator networks
4 October 2021
Sifan Wang
Hanwen Wang
P. Perdikaris
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Improved architectures and training algorithms for deep operator networks"
19 / 19 papers shown
Title
Deep Optimal Sensor Placement for Black Box Stochastic Simulations
Paula Cordero-Encinar
Tobias Schröder
P. Yatsyshin
Andrew Duncan
45
0
0
15 Oct 2024
Deep Learning Alternatives of the Kolmogorov Superposition Theorem
Leonardo Ferreira Guilhoto
P. Perdikaris
38
7
0
02 Oct 2024
Physics-Informed Geometry-Aware Neural Operator
Weiheng Zhong
Hadi Meidani
AI4CE
33
4
0
02 Aug 2024
Weak baselines and reporting biases lead to overoptimism in machine learning for fluid-related partial differential equations
N. McGreivy
Ammar Hakim
AI4CE
29
42
0
09 Jul 2024
A finite element-based physics-informed operator learning framework for spatiotemporal partial differential equations on arbitrary domains
Yusuke Yamazaki
Ali Harandi
Mayu Muramatsu
A. Viardin
Markus Apel
T. Brepols
Stefanie Reese
Shahed Rezaei
AI4CE
30
12
0
21 May 2024
Neural Parameter Regression for Explicit Representations of PDE Solution Operators
Konrad Mundinger
Max Zimmer
S. Pokutta
42
0
0
19 Mar 2024
Variational Autoencoding Neural Operators
Jacob H. Seidman
Georgios Kissas
George J. Pappas
P. Perdikaris
DRL
AI4CE
25
7
0
20 Feb 2023
Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation
Rui Zhang
Qi Meng
Rongchan Zhu
Yue Wang
Wenlei Shi
Shihua Zhang
Zhi-Ming Ma
Tie-Yan Liu
DiffM
AI4CE
44
4
0
10 Feb 2023
Deep learning for full-field ultrasonic characterization
Yang Xu
Fatemeh Pourahmadian
Jian Song
Congli Wang
AI4CE
29
4
0
06 Jan 2023
NOMAD: Nonlinear Manifold Decoders for Operator Learning
Jacob H. Seidman
Georgios Kissas
P. Perdikaris
George J. Pappas
AI4CE
23
68
0
07 Jun 2022
Transformer for Partial Differential Equations' Operator Learning
Zijie Li
Kazem Meidani
A. Farimani
42
140
0
26 May 2022
Physics-informed neural networks for PDE-constrained optimization and control
Jostein Barry-Straume
A. Sarshar
Andrey A. Popov
Adrian Sandu
PINN
AI4CE
27
14
0
06 May 2022
Respecting causality is all you need for training physics-informed neural networks
Sifan Wang
Shyam Sankaran
P. Perdikaris
PINN
CML
AI4CE
30
199
0
14 Mar 2022
Scalable Uncertainty Quantification for Deep Operator Networks using Randomized Priors
Yibo Yang
Georgios Kissas
P. Perdikaris
BDL
UQCV
20
40
0
06 Mar 2022
Learning Operators with Coupled Attention
Georgios Kissas
Jacob H. Seidman
Leonardo Ferreira Guilhoto
V. Preciado
George J. Pappas
P. Perdikaris
24
109
0
04 Jan 2022
Fast PDE-constrained optimization via self-supervised operator learning
Sifan Wang
Mohamed Aziz Bhouri
P. Perdikaris
40
28
0
25 Oct 2021
Arbitrary-Depth Universal Approximation Theorems for Operator Neural Networks
Annan Yu
Chloe Becquey
Diana Halikias
Matthew Esmaili Mallory
Alex Townsend
57
8
0
23 Sep 2021
On the eigenvector bias of Fourier feature networks: From regression to solving multi-scale PDEs with physics-informed neural networks
Sifan Wang
Hanwen Wang
P. Perdikaris
131
438
0
18 Dec 2020
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
203
2,282
0
18 Oct 2020
1