ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.00577
  4. Cited By
Reconstruction for Powerful Graph Representations

Reconstruction for Powerful Graph Representations

1 October 2021
Leonardo Cotta
Christopher Morris
Bruno Ribeiro
    AI4CE
ArXivPDFHTML

Papers citing "Reconstruction for Powerful Graph Representations"

24 / 24 papers shown
Title
Revisiting Graph Neural Networks on Graph-level Tasks: Comprehensive Experiments, Analysis, and Improvements
Haoyang Li
Y. Xu
C. Zhang
Alexander Zhou
Lei Chen
Qing Li
AI4CE
147
0
0
03 Jan 2025
Simplifying complex machine learning by linearly separable network
  embedding spaces
Simplifying complex machine learning by linearly separable network embedding spaces
Alexandros Xenos
N. Malod-Dognin
Natasa Przulj
20
0
0
02 Oct 2024
The Expressive Power of Graph Neural Networks: A Survey
The Expressive Power of Graph Neural Networks: A Survey
Bingxue Zhang
Changjun Fan
Shixuan Liu
Kuihua Huang
Xiang Zhao
Jin-Yu Huang
Zhong Liu
40
19
0
16 Aug 2023
Extending the Design Space of Graph Neural Networks by Rethinking
  Folklore Weisfeiler-Lehman
Extending the Design Space of Graph Neural Networks by Rethinking Folklore Weisfeiler-Lehman
Jiarui Feng
Lecheng Kong
Hao Liu
Dacheng Tao
Fuhai Li
Muhan Zhang
Yixin Chen
44
10
0
05 Jun 2023
An Empirical Study of Realized GNN Expressiveness
An Empirical Study of Realized GNN Expressiveness
Yanbo Wang
Muhan Zhang
39
10
0
16 Apr 2023
Combining Stochastic Explainers and Subgraph Neural Networks can
  Increase Expressivity and Interpretability
Combining Stochastic Explainers and Subgraph Neural Networks can Increase Expressivity and Interpretability
Indro Spinelli
Michele Guerra
F. Bianchi
Simone Scardapane
33
0
0
14 Apr 2023
Graph Positional Encoding via Random Feature Propagation
Graph Positional Encoding via Random Feature Propagation
Moshe Eliasof
Fabrizio Frasca
Beatrice Bevilacqua
Eran Treister
Gal Chechik
Haggai Maron
22
18
0
06 Mar 2023
Equivariant Polynomials for Graph Neural Networks
Equivariant Polynomials for Graph Neural Networks
Omri Puny
Derek Lim
B. Kiani
Haggai Maron
Y. Lipman
24
31
0
22 Feb 2023
Exponentially Improving the Complexity of Simulating the
  Weisfeiler-Lehman Test with Graph Neural Networks
Exponentially Improving the Complexity of Simulating the Weisfeiler-Lehman Test with Graph Neural Networks
Anders Aamand
Justin Y. Chen
Piotr Indyk
Shyam Narayanan
R. Rubinfeld
Nicholas Schiefer
Sandeep Silwal
Tal Wagner
39
21
0
06 Nov 2022
Boosting the Cycle Counting Power of Graph Neural Networks with
  I$^2$-GNNs
Boosting the Cycle Counting Power of Graph Neural Networks with I2^22-GNNs
Yinan Huang
Xingang Peng
Jianzhu Ma
Muhan Zhang
81
47
0
22 Oct 2022
Universal Prompt Tuning for Graph Neural Networks
Universal Prompt Tuning for Graph Neural Networks
Taoran Fang
Yunchao Zhang
Yang Yang
Chunping Wang
Lei Chen
24
47
0
30 Sep 2022
From Local to Global: Spectral-Inspired Graph Neural Networks
From Local to Global: Spectral-Inspired Graph Neural Networks
Ningyuan Huang
Soledad Villar
Carey E. Priebe
Da Zheng
Cheng-Fu Huang
Lin F. Yang
Vladimir Braverman
23
14
0
24 Sep 2022
Agent-based Graph Neural Networks
Agent-based Graph Neural Networks
Karolis Martinkus
Pál András Papp
Benedikt Schesch
Roger Wattenhofer
LLMAG
GNN
29
17
0
22 Jun 2022
SpeqNets: Sparsity-aware Permutation-equivariant Graph Networks
SpeqNets: Sparsity-aware Permutation-equivariant Graph Networks
Christopher Morris
Gaurav Rattan
Sandra Kiefer
Siamak Ravanbakhsh
47
40
0
25 Mar 2022
Sign and Basis Invariant Networks for Spectral Graph Representation
  Learning
Sign and Basis Invariant Networks for Spectral Graph Representation Learning
Derek Lim
Joshua Robinson
Lingxiao Zhao
Tess E. Smidt
S. Sra
Haggai Maron
Stefanie Jegelka
49
141
0
25 Feb 2022
A Theoretical Comparison of Graph Neural Network Extensions
A Theoretical Comparison of Graph Neural Network Extensions
Pál András Papp
Roger Wattenhofer
97
45
0
30 Jan 2022
From Stars to Subgraphs: Uplifting Any GNN with Local Structure
  Awareness
From Stars to Subgraphs: Uplifting Any GNN with Local Structure Awareness
Lingxiao Zhao
Wei Jin
L. Akoglu
Neil Shah
GNN
24
160
0
07 Oct 2021
Equivariant Subgraph Aggregation Networks
Equivariant Subgraph Aggregation Networks
Beatrice Bevilacqua
Fabrizio Frasca
Derek Lim
Balasubramaniam Srinivasan
Chen Cai
G. Balamurugan
M. Bronstein
Haggai Maron
48
175
0
06 Oct 2021
The expressive power of kth-order invariant graph networks
The expressive power of kth-order invariant graph networks
Floris Geerts
126
37
0
23 Jul 2020
Benchmarking Graph Neural Networks
Benchmarking Graph Neural Networks
Vijay Prakash Dwivedi
Chaitanya K. Joshi
Anh Tuan Luu
T. Laurent
Yoshua Bengio
Xavier Bresson
189
914
0
02 Mar 2020
Representation Learning on Graphs with Jumping Knowledge Networks
Representation Learning on Graphs with Jumping Knowledge Networks
Keyulu Xu
Chengtao Li
Yonglong Tian
Tomohiro Sonobe
Ken-ichi Kawarabayashi
Stefanie Jegelka
GNN
267
1,944
0
09 Jun 2018
MoleculeNet: A Benchmark for Molecular Machine Learning
MoleculeNet: A Benchmark for Molecular Machine Learning
Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
C. Geniesse
Aneesh S. Pappu
K. Leswing
Vijay S. Pande
OOD
172
1,775
0
02 Mar 2017
Geometric deep learning on graphs and manifolds using mixture model CNNs
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
251
1,811
0
25 Nov 2016
Improving neural networks by preventing co-adaptation of feature
  detectors
Improving neural networks by preventing co-adaptation of feature detectors
Geoffrey E. Hinton
Nitish Srivastava
A. Krizhevsky
Ilya Sutskever
Ruslan Salakhutdinov
VLM
266
7,634
0
03 Jul 2012
1